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Executive Summary 
 

This report describes the results of a vision-based collision prevention system trialled at 
timber mills in Mount Gambier, South Australia to investigate its applicability in real world 
surroundings. The results of this study provide a novel approach for automating remote 
monitoring of forestry workers safety behaviour by fusing data on their location and 
proximity to hazards. The proposed solution can potentially contribute to accident prevention 
(avoidance) and reduction and ensure worker welfare through the supply chain, from 
plantation harvesting to sawmill. This study also aims to bring development and 
implementation costs of the solution to a minimum by carefully selecting low cost and easy to 
maintain components with a shared cost arrangement, as part of the existing personal 
protective devices.  
 
This project had a primary goal of understanding the needs, challenges, and opportunities of 
using sensor-based remote hazard monitoring, and developing a workwear embedded with 
such technology for harvesting and sawmilling operations to ensure the wellbeing of workers. 
This project aimed to: 
(a) Identify business requirements of the safety device covering multiple perspectives 

including health and safety, welfare of workers, etc., 
(b) Evaluate a technology feasibility and adoption framework, and 
(c) Develop a proof-of-concept demonstration system with the understanding of worker 

perceptions of the technology. 
 
This project has successfully identified and assessed health and safety hazards of forestry 
operations based on literature, past accident data, interviews and observation/work-studies 
carried out in the field. It identified parameter requirements for hazard monitoring in forestry 
operations against readily available sensors. Several successor measures (e.g. accuracy, 
adaptability, etc) and coverage scenarios were emerged as the testing base for the proof-of-
concept system.  
 
The project has also evaluated the suitability of readily available sensors and short-range 
communication technologies that could help monitor health and safety hazards in harvesting 
and sawmilling operations of the forestry supply chain. These include the integration of real-
time location sensing (RTLS), physiological status monitoring (PSM), and proximity sensing 
(PS) using fusion of data technology.  However, it was determined that existing solutions fail 
short in the context of this project. Problems include high individual unit cost, limited 
scenario coverage, lack of required network infrastructure, etc.  
 
Based on the literature and interview findings, this project has successfully designed and 
delivered an image-based detection system which can accurately detect vehicles and humans 
to alert potential collision. The system was designed as an Android mobile application based 
on the standard on-device cameras. Videos taken from the field were used in the testing. The 
project participants were satisfied with the proof-of-concept system with its highly accurate 
detection rate. It is expected that the mobile devices can be mounted on the vest, helmet and 
other personal wear. In addition, the application can also be easily modified for other 
embedded devices in the market.  
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Introduction 
 

The forestry is considered as a hazardous industry based on its health and safety record 
(Gejdos et al., 2019). Forestry operations rank highly in terms of fatality rates, especially 
harvesting operations (Melemez, 2015). Forestry operations pose a high risk of accidents due 
to factors such as, a work environment involving difficult terrain and weather conditions; use 
of heavy machinery and power tools; work conditions such as exposure to noise, dust, 
vibration, exhaust fume, body posture; and worker fatigue (Gejdos et al., 2019). Personal and 
work characteristics combined with the work environment are believed to influence the 
creation of a hazardous environment that could be triggered by different mechanisms that 
could cause an accident. To prevent accidents in forestry, a number of initiatives have been 
taken including: stricter workplace health and safety regulations; mechanisation of forestry 
operations; safety awareness and training among workers; enhanced commitment of the 
higher management; improved safety behaviour of workers; to name a few (Tremblay & 
Badri, 2018). In recent years, researchers have attempted to develop early warning systems to 
alert workers on the impending hazards (Newman et al., 2018) with real-time alerts using 
sensor-based technology becoming very popular (Bowen et al., 2019). 

The Internet of Things (IoT) is bringing the internet into every aspect of work environments – 
from engineering to health, infrastructure, agriculture, providing a revolution of connected 
sensing technologies and communication platforms. Despite significant progress within the 
monitoring device industry, the widespread integration of this technology into workplace 
health and safety portfolios remains limited. Although technology has undoubtedly played a 
major role in the improvement of forest management and processing activities, its application 
for personalised safety monitoring has not been fully explored. The forestry sector lags some 
other industries such as manufacturing, mining and construction in the trialling and 
introduction of these technologies. Due to the hazardous working environments in the forestry 
sector, workers frequently face safety and health risks throughout the supply chain. The IoT 
trend is well underway in Machine-to-Machine (M2M) communications and is poised to 
radically change the world’s business environment. Automated hazard monitoring systems 
based on sensor and short-range communication technologies are considered one of the most 
promising methods to help manage these risks. Automated monitoring systems can acquire 
data, convert it into structured information, and immediately deliver these to the worker as an 
early warning for corrective action.  

The availability of powerful yet inexpensive small sensing devices coupled with 
communication network allow applications which previously not being possible, such as 
wearable sensor system for worker safety with real-time monitoring and warning. The 
adoption of wearable technology has the potential for a result-oriented data collection and 
analysis approach to providing real-time information and early warning of potential hazards to 
forestry workers. A review of the literature indicates that the existing wearable technologies 
applied in other industrial sectors can be used to monitor and measure a wide variety of 
ergonomic and safety performance metrics within the forest industry.  

The most popular development in the construction and mining sectors is proximity sensors 
used to monitor and alert the worker amidst a plethora of large moving equipment on sites 
(Teizer and Cheng, 2015). These technologies are capable of monitoring and providing real-
time geo-referenced steaming of the site environment to safety managers (Mayton et al. 
2012). They monitor gases, dust, noise, light quality, altitude, etc., and help safety managers 
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to continuously assess risks to workers and localise their prevalence. The resultant knowledge 
accumulated on the frequent crossovers between workers and heavy equipment could lead to 
better site layout designs (Teizer and Cheng, 2015). The ability for early warning of workers 
on potential collision is another benefit of these proximity sensors which uses a personal tag 
on the worker and a reader on the equipment with an antenna and other communication 
technology to trigger alerts when there is an overlap of the radio frequency fields that defines 
each units’ proximity warning space (Teizer et at., 2010; Marks & Teizer, 2013). The other 
application is to create a virtual fencing of danger zones, locate 3D coordinates of workers 
using ultra-wide band (Carbonari et al., 2011; Giretti et al., 2009) or mobile 
infrared/ultrasonic sensors (Lee et al., 2009) to alert when they are within or close to such 
zones. Park et al (2016) found Bluetooth technology is better than magnetic and radio-
frequency identification (RFID) based technologies for proximity sensors in avoiding worker 
and heavy machinery collision on construction sites (Chae et al., 2010).   

Benefits of individual wearable sensors or systems can be integrated based on their attributes 
for multi-parameter monitoring of ergonomic and safety performance. While the existing 
sensor technology is being trialled in many industries, their application in forestry is limited 
due to both systemic issues and environmental conditions. The sensor-based techniques suffer 
from software instability, interruptions with very high electrical voltage in timber mills, the 
need for multiple tags and receivers limit practical deployment, and some technologies (such 
as GPS) won’t be suitable for internal environments. From an environmental perspective, 
traditional sensor-based technologies cannot deal with the dynamic nature of forestry 
operations, particularly RFID-based technologies need direct line of sight, and environmental 
heat can cause errors in sensors (such as pressure sensors). Compared to the above, vision-
based systems have the advantage of not requiring the installation of multiple tags, they incur 
lower costs and are easier to maintain (Zhang et al., 2020). 
 
This project developed a prototype of a personal protection equipment (PPE) embeddable 
vision-based system that monitors the health and safety hazards in sawmill operations and 
provide early warning to the individual worker. The prototype relies on a method that uses 
‘fusion of data’ from continuous remote monitoring of workers’ location and proximity to 
hazardous conditions. The proposed solution is expected to prevent work-related injuries in 
forestry operations to help maintain the health and wellbeing of workers. It could reduce 
work-related injury expenses such as insurance claims, lost days, and lost productivity. As an 
indirect impact, it could improve the productivity of a worker as they are alerted on potential 
hazards cross referenced to the work environment to provide real-time safety situation-
awareness, so that workers feel safer. In addition, to active workers, it could also help workers 
recovering from accidents and have returned to work, and help new workers to become 
proficient and safe in their jobs with confidence. 
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Methodology 
 
 Experimental Design  
 
The research had the primary goal of understanding the needs, challenges, and opportunities 
of using sensor-based remote hazard monitoring and developing a workwear embedded with 
such technology for harvesting and sawmilling operations to ensure the wellbeing of workers. 
This project aimed to: 
 
(a) Identify business requirements of the safety device covering multiple perspectives 

including health and safety, welfare of workers, etc., 
(b) Evaluate a technology feasibility and adoption framework, and 
(c) Develop a roof-of-concept demonstration system with the understanding of worker 

perceptions of the technology. 
 
The research was undertaken in three phases. Phase 1 covered two site/plant visits, N.F. 
McDonnell & Sons and OneFortyOne Jubilee Sawmill, Mount Gambier, South Australia. A 
comprehensive Phase 1 assessment to understand the potential value of the application for the 
worker safety by using the latest available wearable sensor technology was one of the key 
outcomes. Phase 2 included a literature review to support technology selection and a 
laboratory pilot trial. Phase 3 included a case study with extensive field trials to test the proof-
of-concept in a real work environment. Details of these three phases and trial procedures are 
given below.  
 
 

Phase 1: Inception Meeting, Interviews and Survey – Requirement Analysis 
 
The research started with an inception and planning meeting with the project steering 
committee to define the evaluation and screening criteria of both industry needs and available 
technologies. A detailed and a refined work plan was provided after the inception meeting to 
outline the requirements for implementation of the project and ensure quality objectives were 
achieved. Health and safety hazards of harvesting/sawmilling operations were identified 
based on literature, accident data obtained from the SafeWork SA, and observation/work-
studies carried out in the field. This was followed by an interview/survey approach from the 
tentative list of participants obtained during the inception meeting. The report was intended to 
include an analysis of the responses received as a validation that the needs and opportunities 
described by the representatives interviewed were considered. For details of Phase 1 outcome, 
refer Appendix 1.  
 

Phase 2: Technology Selection and Laboratory Trial – Development 
 
Phase 2 of the project was based on the outcomes obtained in Phase 1 and mainly focused on 
mitigation measures. The various stages involved in Phase 2 are as follows. 

(a) Establish parameter requirements for hazard monitoring in critical operations 
identified in Phase 1 against available sensors.   

(b) Contextualise sensor technologies to those critical operations and integrate with 
information sharing and early warning through smart phone.  

(c) Development of a prototype of the sensor-embedded PPE and calibration in laboratory 
environment. 
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(d) Investigation of privacy concerns regarding person metrics data (further consultation 
with stakeholders needed). 

 
The communication component and stakeholder engagement were also key components of 
this project. Sharing knowledge amongst industry partners was an important objective of this 
project, particularly sharing the experience of building successful business cases for the 
implementation of this new development. The project has also considered the importance of 
implementation (research outcome transfer to operational tools). Industry partners have 
guided the research team regarding industry requirements. 
 

 
Phase 3: Case Study Selection / Field Trial 

 
Prior to the case study/field trial, the research team tested the proof-of-concept detection 
algorithm on the roadside of suburban streets to detect people and vehicle interactions – the 
initial experiment trial. Based on the results, the detection algorithm was adjusted for the field 
trial. Case studies were consequently selected as these provide the most relevant and realistic 
industry requirements. In particular, they also serve as testing grounds for the proposed 
detection method, especially for the accuracy measures. As a consequence, two large sawmills 
in Mount Gambier, South Australia, participated in this study. Initial consultations identified 
mobile plant and pedestrian interactions would be the key focus. Forklifts in confined spaces 
having to manoeuvre between production lines and aisles with ground workers involved in 
manual operations (such as stacking, strapping, wrapping, packing, quality inspections, 
segregation etc.) in proximity poses severe hazards of potential collision. The 15-ton loaders 
operating outside the mill could come in contact with forklifts and ground workers in this 
confined space. The visibility of loaders is poor due to stacks of finished timber piled on the 
ground. In addition, the mobile plant operator (both forklift and loader) could lose visibility 
due to blind spots and the large loads carried. When the loader-forklift and ground workers 
are both present in these confined spaces, with a large and heavy timber load, risk of contact 
collision is high. This situation is exacerbated by the temporary blindness experienced by the 
plant operator when suddenly moving from poorly lit indoor spaces to outdoor.  
 
Therefore, mobile plant-worker and plant-plant interactions were identified as the most 
critical, hence, selected as the case studies for this technology development. Among them, 
four scenarios were selected for detailed analysis.   
i. Human to Vehicle (Forklift and Truck) – indoor 
ii. Human to Vehicle (Forklift and Truck) – outdoor 
iii. Vehicle to Vehicle – indoor (less common) 
iv. Vehicle to Vehicle – outdoor, especially when a forklift and a loader are closer to each 

other.  
 
With respect to the embeddable requirements, an Android mobile application based on the 
standard on-device cameras was selected for the proof-of-concept. The mobile devices could 
be mounted on the vest, helmet and other personal wear. In addition, the application can also 
be easily modified to other embedded devices in the market. The core of this solution is a 
machine learning model which is built based on Artificial Intelligence (AI), AI-based image 
processing algorithms, detecting both vehicles and human movements. The proposed solution 
does not rely on any communication network or require additional cloud hardware. Due to 
these unique characteristics, it can be deployed rapidly in any environment. Hence, this 
technology is deemed suitable for forestry operations and field trials were conducted as 
described below.   
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Field Trial Procedures 

 
Videos were captured in two occasions (pilot and testing). In total, approximately 8 videos 
were taken to represent different scenarios. Therefore, the testing was able to cover all 
scenarios including both indoor and outdoor, ideal vs sub-optimal lighting conditions, human 
to vehicle and vehicle to vehicle. The system was developed as an Android application which 
captured the video feeds directly from the camera on the mobile device. It was later modified 
to take video feeds from pre-captured mp4 files. Since the underlying algorithm stayed the 
same, the result was applicable in real world scenarios. 
 
Due to COVID restrictions, all site visits were suspended. For field trials, a purpose made 
helmet mount of a plant supervisor was used during routine work to capture video footage for 
system development and testing purposes.  
 

 
Figure 1: DIY helmet mounted system (Smart Phone in use) –  

camera focusing set to 1 to 50 meters 
 

Evaluation Criteria  
 

Several measures were employed to evaluate the success of this development: 
i. Accuracy: Can the technology detect potential risks in the above scenarios real-time? 
ii. Reliability: Can the technology be stable in hash environments (e.g. rain, dust, low 

light) with minimum human intervention for a sustained period? 
iii. Cost: Does the adoption of technology (individual or vehicle based) result in excessive 

cost? 
iv. Adaptability: Can the technology be used in less ideal environments (e.g. indoor, no 

network connectivity, etc.). 
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Results 
 
This section reports the results obtained in the desktop assessment, laboratory evaluation, and 
field trial assessment. 
 

Desktop Assessment of Technologies 
 

The literature and technology market scan suggested that the current sensor technologies 
cannot address the issues found in forestry operations satisfactory. Current commercial state 
of the art solutions has been developed based on proximity sensors which uses radio signals 
such as Bluetooth and WiFi network to detect approaching vehicles and humans. However, 
each device costs about A$5000-A$8000, which is too costly for day-to-day scalable 
adoption. These solutions also rely on an expensive underlying network coverage which may 
not be available at all sites.  
 
Some deployment and support capabilities and challenges identified include: 
• Ultrasound/IR/laser: Directional, multiple sensors are required to cover 360 degrees 

resulting in data processing issues and increasing hardware cost and time to fit into 
equipment. 

• Radio-based systems such as Bluetooth: Easily interfered by the plant and equipment 
setup. 

• Location awareness such as GPS: Existing technologies may fit well in one set of 
scenarios (e.g. GPS location tracking for outdoor), they do not fit well for others such as 
inside the mill where signals can be distorted or not available. 

• Commercial solutions: Require whole site data and a very expensive solution yet limited 
in accuracy.  

• Administrative controls: This solution involves the separation of workers and vehicles, but 
this is not always feasible.   
 

The study further examined the emerging technologies and determined that a risk 
identification approach through AI-based image processing (object detection) could be viable, 
as such an approach has proven to be effective in other applications (e.g. public monitoring) 
as shown in the example below. 
 

 

Figure 2: Example of vehicle and human detection  
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Image Recognition Trial 
 
Image recognitions trials were conducted in two stages. First an experimental trial followed 
by field trials. The results obtained from the experimental trial was fed into the field trial and 
used for planning of the field trial. 
 

a. Initial Experimental Trial 
 
An experimental trial was conducted on the roadside of Adelaide’s suburban streets to verify 
the applicability of the image detection algorithm against full size and moving objects. This 
was used as a demonstration in the discussion with the industry partners to facilitate the 
planning of the field trial. Special attention was given to obstructed views where people or 
vehicles were only partially captured.  
 
Note that the raw detection algorithm threshold values cannot be used as an accuracy 
measure. These thresholds are calculated based on two factors: 

1. Whether or not there are recognisable objects within the identified area, and 
2. Whether or not the correct object type is assigned. 

Therefore, this experimental trial also formed part of the initial setup to decide the optimum 
weighted detection threshold for the field trial. A higher threshold cut-off value is likely to 
result in fewer detected objects. However, once the object is detected, the assigned type (e.g. 
car, truck, people) is likely to be accurate. In contrast, a lower threshold cut-off value is likely 
to result more detected objects. However, the assigned type is likely to be inaccurate.  
 
After the experimental trial, the research team was confident of the merit of the proposed 
image detection approach as demonstrated in Figure 3. More importantly, the team identified 
a balanced value for the field trial. Based on a number of experimental trials, an internal cut-
off value of 40% was set. In other words, the Proof-of-Concept algorithm treats any detection 
with an internal threshold value above 40% as a correct object-detection event relating to 
safety monitoring (human and vehicle).  
 
 

 
 
Figure 3: Initial experimental trial to demonstrate the object detection ability with % accuracy 

in the display 
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b. Case Study / Field Trial 

 
With the on-site supervisors’ assistance, several video clips were recorded to cover both 
indoor and outdoor scenarios. Given that the indoor lighting is constant, special attention was 
given to the outdoor lighting conditions to cover both bright mid-day light and later afternoon 
low light (cloudy late afternoon) conditions. 
 
To provide an accurate measurement of the real-world application, human manual assessment 
is essential. Thus, in total, 58 indoor, 61 outdoor bright light and 53 outdoor lowlight images 
were randomly extracted from the recorded video clips for verification.  The human tagger 
was given the raw images and the result spreadsheet (for example, see below). After checking 
the original image, the tagger manually assigned the value 1 for correct detection and 0 for 
incorrect detection.  
 
Table 1: Human tagging example 

Image  Time Type Area Detection 
Success 

22 00:25.6 Vehicle RectF(-15.923696, 658.1464, 812.1965, 
1560.0878) 

1 

57 01:06.5 Person RectF(812.2905, 1268.6532, 958.5147, 
1741.5225) 

1 

 

 
Figure 4: Field trial with indoor and outdoor detection examples with the object identified 

with % accuracy displayed. 
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Based on the human tagging results, the overall detection accuracy is shown below. 
 

Table 2: Accuracy measure  
Success-
People 

Success - 
Vehicle 

Errors- 
People 

Errors- 
Vehicle 

Accuracy 

Outdoor lowlight 10 23 5 15 62.26% 
Outdoor daylight 26 29 1 5 90.16% 
Indoor constant light 27 27 2 2 93.10% 
Total 63 79 8 22 82.56% 

 
Overall, the image processing algorithm is found highly accurate, especially, under good 
lighting conditions. The false alarms and misses were also identified, and reasons were also 
found. For example, some of the mobile trays were detected as vehicles as they shared similar 
characteristics to vehicles due to the presence of wheels. 
 

 
Figure 5: Error – A mobile trolley is recognised as a vehicle 

 

Discussion 
 
The discussion is presented in three parts: the first part discusses outcomes that are literature 
based (worker safety / accident data analysis); the second part on wearable sensing 
technologies and their suitability (technology scan); and the third, outcomes that were 
experimental based. 
 

Worker Safety / Accident Data Analysis 
 

The data for this study was obtained from SafeWork SA which collates compensation claims 
data obtained from WorkCover SA into a database for policy analysis. WorkCover SA is a 
government agency, responsible for the prevention and compensation of occupational 
accidents and diseases in South Australia. It is entrusted with the administration and 
regulation of the Workers Rehabilitation and Compensation Act 1986 and the South 
Australian Workers Rehabilitation and Compensation scheme. It maintains a large and most 
comprehensive database representative of all reported workplace accident compensation 
claims in South Australia. The data contained a total of 330,000 workers compensation claims 
reported during 1st July 2002-31st June 2013 in South Australia, out of which 860 under the 
industry category ‘forestry’ based on the Australian and New Zealand Standard industrial 
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Classification (ANZSIC) coding. Australia uses the Type of Occurrence Classification 
System (TOOCS2) as a coding guideline for recording of compensation claims and that 
enabled the researchers to extract ‘forestry’ accidents and segregate them into standardised 
categories of injury type, mechanism of accident, agency, body location of injury, and 
whether the victim was hospitalised for treatment. In addition, the database contained the day 
and time of accidents, location (postcode), occupation, gender, and a detailed description of 
the event. All 860 reported accidents were analysed to obtain the profile of accidents and the 
average cost of it in ‘logging’ and ‘processing’ operations (these represented only the cost of 
lost days and treatment). The ‘severity’ of an accident was used as a means of estimating the 
cost of lost days and cost of treatment. 
 
The classification of the severity of an accident is determined by the severity of injuries 
suffered by the victim. Different methods and classifications of injury severity were used in 
WHS research. The National Patient Safety Agency (NPSA) of the United States categorises 
injuries into five groups based on the treatment necessitated for the victim. A ‘negligible’ 
injury is one which the victim does not need treatment, whereas a ‘minor’ injury will only 
necessitate minor treatment. A ‘moderate injury’ requires the victim to undergo professional 
treatment and care. A ‘major injury’ is one which the victim suffered a long-term 
incapacitation. The highest in the scale, ‘catastrophic’ refers to injuries leading to death, 
multiple permanent incapacities or irreversible health effects. Using a similar methodology, 
Aneziris et al. (2012) classified injuries into three groups: recoverable, non-lethal permanent, 
and lethal. Between NPSA and Aneziris et al., (2012), the former is more practical and 
contains many intermediate levels of non-fatal injuries. Nevertheless, both classifications 
suffer from potential data collection issues as the treatment records would only be available 
through hospital or health sources. Therefore, accidents which did not use treatment outcomes 
will not be captured through these classifications. In this context, proxy measures of injury 
severity would become very useful. Dumrak et al. (2013) used a combination of 
hospitalisation and number of lost days from work as a means of classifying accident severity 
into six groups. Using a similar philosophy, the research team employed two measures to 
obtain the severity of the reported accidents which enabled the quantification of the cost of an 
injury: injury classified as ‘minor’ and ‘major’ based on number of lost days from work; and 
the cost of treatment ($).  
 
A ‘minor’ injury is defined as one with zero lost days while ‘major’ injury necessitates the 
victim to be absent from work for recovery. As the cost of recovery is directly proportional to 
the amount claimed as cost of treatment, the dollar value is used as an alternative measure of 
accident severity. These two proxy severity measures are useful in three ways. First, they do 
not depend on treatment to physical injuries and need not be from hospital or health sources. 
Therefore, it eliminates all potential biases of non-capture of minor injuries that never sought 
treatment or hospitalisation. Second, it captures non-physical injuries such as socio-
psychological, which are neglected in WHS research. However, due to an increasing number 
of such injuries in workplaces, researchers are now paying close attention to socio-
psychological health at workplaces. As they cannot be ignored, proxy severity classifications 
become very useful in capturing those injuries. Third, proxy measures are not biased towards 
either end of the severity continuum as most of the treatment-based methods do and provide a 
balanced representation of the accident severity. 
 
A total of 18,778 lost days were reported by the 860 forest industry accident victims which 
translates into an average of 22 lost days per accident. Similarly, victims claimed $12.1 
million as compensation for medical treatment with an average of $14,033 per accident. 
Forestry operations are typically characterised as physically demanding tasks that are often 
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performed in harsh environments. Because of the continuous and repetitive exposure to 
physically demanding work, strains and sprains are the most common type of work-related, 
nonfatal injuries, which constitute 18% and 26% of harvesting and sawmilling injuries 
reported in South Australia.  Furthermore, the continuous exposure to an excessive level of 
physical strain can lead to physical fatigue, which may result in decreased productivity and 
motivation, inattentiveness, poor judgment, poor quality work, job dissatisfaction, and 
increase in the risk of developing worker-related musculoskeletal injuries (MSIs) or 
cardiovascular disorders.  
 
The data analysis found that MSIs are the largest injury types that accounted for 35% of total 
injuries followed by incidence of struck by or trap between moving objects (26%). It revealed 
that lower back injuries are among the most common MSIs among those reported (43%). 
These occur when the demand of work exceeds the capacity of a worker’s body or the worker 
repetitively performs heavy activities. Musculoskeletal injuries can also be found in other 
parts of the body, such as the shoulders (21%), Chests (11%), and wrists (7%). They are 
usually caused by overexertion, which is a leading cause of time-loss injury for the reported 
accidents. The analysis showed that half of the injuries, more than 100 lost days are 
attributable to overexertion. Overexertion is not only the most common event category, but 
also the most expensive, resulting in $6.2 million in direct medical expenses to the industry 
during the review period. Because of this harsh and dynamic environment with added 
overexertion, there is very high potential for vehicle-human collision in the workplace. This 
was shown by the incidence of struck by or trap between moving objects contributing to 26% 
of accidents reported in the database. This was further evidenced in the interviews conducted 
during the site visits where ‘mobile equipment and pedestrian interactions’ were cited as the 
most concerning WHS issue for timber mills (refer Appendix 1). Hence, the next stages of 
this research mainly focused on solving this issue by enhancing the situational awareness of 
the worker (pedestrian) and the plant operator using early warnings with the help of wearable 
sensing technology.  
 

Wearable Sensing Technology 
 

According to Pantelopoulos and Bourbakis (2010), wearable technologies are based on 
different systems ranging from bio-signal sensors for body sensor networks such as body 
temperature probes, pulse oximeters, skin electrodes, phonocardiographs, galvanic skin 
response (GSR), accelerometers, gyroscopes, and magnetometers electrocardiogram 
(ECG/EKG), and electromyography (EMG); multimedia sensors such as video and static 
cameras, magnetic and ultrasonic devices; communication and localisation devices such as 
Bluetooth and Global Positing System (GPS). Processing of data collected from these devices 
using data fusion algorithms facilitates continuous monitoring for various applications 
including occupational health and safety (Valero et al., 2016; Gravina et al., 2017). The 
evolution of digital and mobile technology has transformed many aspects of the workplace 
with many examples for worker health and safety. Innovations in sensor technology have 
been essential to the implementation of body sensor networks and have been combined with 
progress in short-range communication technologies such as Bluetooth which have enabled 
the implementation of wearable computing devices. 
 
Wearable sensors can be utilised in conjunction with ambient sensors, such as proximity 
sensors mounted at hazardous locations or mobile heavy machinery. Proximity sensing will 
apply similar techniques from autonomous vehicles, using LIDAR and stereoscopic cameras 
for depth map acquisition, and panoramic camera for 360 video captures (including near 
infrared sensors for scenarios with low luminance conditions) (Dou et al., 2017; Kukkala et 



 
 

12 
 
 

al., 2018). Depth map and visual information captured by these devices is processed with 
computer vision and machine intelligence algorithms (specifically, using deep learning) to 
detect field staff and identify the distance to hazardous locations (Patel et al., 2012). 
 
Different categories of wearable technology have been applied across industries such as 
health care, sports and fitness, manufacturing, mining, construction, defence etc. Some of 
these technologies and their applications are summarised in Table 3. Previous studies suggest 
that ergonomic and physiology-related attributes, such as posture, body acceleration, and 
heart rate can be measured using remote sensing technology. One example is Physiological 
Status Monitoring (PSM) technology. Commercially available PSM devices have shown to 
provide reliable information during similar activities in industries such as construction and 
mining. The problem with PSM is, however, that it does not record nor relate the location of 
the worker and whether there any other hazards that are in proximity. This shortcoming can 
be solved by fusing PSM data with data from Real-Time Location Sensing (RTLS) devices, 
such as Global Positioning System (GPS) sand Proximity Sensors (PS). 
 
 

Table 3:  Application of wearable technology in other industries 
 

Sector Application Features 
Healthcare  • Record of physiological data from patients  

• Remote patient monitoring 
 
 

People keep track of 
their health while 
avoiding unnecessary 
visits to the doctor 

Manufacturing  Tracking heart rate, activity, respiration, body 
temperature, and posture  
 

Lower healthcare costs 
and increase productivity 
and safety of workers 

Sports and 
fitness  

• GPS watches, heart rate monitors and 
pedometers   

• Sensors in helmets of National Football League 
(NFL) players in USA to detect concussion 

• Smart compression shirts to determine a 
pitcher's effectiveness in USA’s Major League 
Baseball (MLB) 

• Wristband wearable in golf practice sessions to 
improve swing mechanics 

 

Obtain real-time 
information about 
performance and safety 
of players 

Mining and 
transport  

Proximity warning system (PWS) based on 
GPS and peer-to-peer communication  

Prevent collisions 
between mining 
equipment, small 
vehicles, and stationary 
structures 

Construction  Proximity detection and alert systems  Promote safety on 
construction sites 

 
 
Case study / Field Trial 

 
Two workshops were arranged during the development stage. The first one demonstrated the 
mobile app function against road traffic for accurate object detection. The second 
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demonstrated the results from the video images captured during the field trial. The 
development team has captured all the detection points (time elapsed in the video) in a 
separate spreadsheet and checked against the real footage. The image processing is found 
highly accurate (90%+) under good lighting. Where false alarms and misses were identified, 
explanations were given.  
 
The use of sound data was found problematic due to high ambient noise (indoor machinery) 
and wind (outdoor). The accuracy of combining sound and visual data in a noisy factory 
setting has posed a number of issues. Unlike image captures (taken from either front or real 
cameras), microphones on mobile devices are often front-facing only. When taking images 
from rear cameras, the body of the device itself often prevents the front-facing microphones 
from capturing clear sound. Due to poor quality sound data and ambient noise the 
combination of sound and image was proven difficult to achieve.  
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Conclusions  
 
Due to hazardous work environments in the forestry sector, workers frequently face safety 
and health risks throughout the supply chain. Automated hazard monitoring systems based on 
sensor and short-range communication technologies are considered one of the most promising 
methods to help manage these risks. Automated monitoring systems can acquire data, convert 
it into structured information, and immediately deliver these to the worker as an early warning 
for corrective action. While industries such as healthcare, sports and fitness, manufacturing, 
mining, construction etc. have started using above technologies, the forestry sector has been 
slow in trialling and using personalised safety monitoring systems in its workplaces. 
 
These technologies have a great potential to reduce health and safety incidents and injuries. 
The estimated direct cost of accidents to the South Australian forest industry is $1,050,000 
per annum (accounting only for lost days and medical cost). This study has successfully 
identified and assessed health and safety hazards of forestry operations based on literature, 
past accident data, interviews and observation/work-studies carried out in the field. It 
identified parameter requirements for hazard monitoring in forestry operations against readily 
available sensors. Success measures and coverage scenarios emerged as the testing base for 
the proof-of-concept system.  
 
Overall, the end user participants of the study were highly satisfied with the proof-of-concept 
system and the highly accurate detection rate (90%+) under good lighting conditions that the 
system produced.  However, the researchers still believe that the underlying AI object 
algorithm can be further enhanced to improve overall accuracy. For example, by combining 
detection results from multiple images within a short period (e.g. +2 -2 seconds), the detection 
accuracy could be improved significantly. Also, a new detection model can be developed 
(trained) for unfavourable conditions such as low ambient light.  
 
In addition to the development and testing, it was found that existing off-of-the-shelf 
algorithms to identify the proximity and direction of movement of a vehicle based on image 
processing techniques could be used in the future commercial developments. When the camera 
is mounted in a relatively fixed position (e.g. on top of a forklift or factory wall), it is possible 
to derive distances between two tracked objects through triangulation by calculating the angle 
of the ground surface. However, this can be complex as both objects may be moving and this 
information needs to be calculated rapidly, multiple times per second, and then linked to the 
potential collision algorithm to identify and alert of possible impacts.  
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Recommendations 
 
The AI-based image processing system developed in this project is expected to prevent work-
related injuries in forestry operations and help maintain the health and wellbeing of workers. 
It could reduce work-related injury expenses such as insurance claims, lost days and lost 
productivity. As an indirect impact, it could improve the productivity of a worker as they are 
provided with real-time safety situation-awareness information to help workers feel safe. In 
addition to those who are healthy, it could also help workers who recovering from accidents 
and who have returned to work, and new workers to become proficient and safe in their jobs 
with confidence. 
 
The potential system deployment and ongoing operational cost must be considered in the 
future commercial adoption. For example, many proximity sensors use WiFi networks to 
transmit data real-time, so where there is insufficient WiFi coverage on site, the technology 
cannot function normally.  
 
The project team is keen to undertake the development of this proof-of-concept to an 
implementation project. A factsheet has been developed to highlight the features of this 
potential development (see Appendix 2). In addition, a brief implementation project plan with 
indicative funding requirements have been prepared (see Appendix 3). 
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Appendix 1 
 

Phase 1: Inception Meeting and Interview Outcomes 
 
N.F. McDonnell & Sons, Mount Gambier, South Australia 
 
1. The site has 150 workers. Hard hats are not mandatory in all areas, hence sensors need to 

be embedded on safety vests (safety vests preferred) or maybe boots could be an option 
too. In most cases, safety glasses are required. 

2. When asked about the Wi-Fi coverage within the site, we were assured that generally the 
coverage is OK. Wi-Fi is strong in Mill 3, however there are a few blackspots in the Log 
Yard and Mill 2. The main server is in the Site Office and a fiber optic cable runs from 
there to Mill 2. A Wi-Fi extender could be added to extend the coverage range. 

3. When asked about the willingness to pay for sensor embedded safety vests, $200 p.a. per 
vest would be affordable if it could reduce risks considerably. The investment could be 
more justifiable per item of mobile plant than per worker due to the numbers involved (few 
items of mobile plant compared to workers).  It is noted that at this stage, they are not 
looking into devices that require heavy modifications to the existing infrastructure (e.g. 
systems that would auto stop the forklifts).  

4. When asked about the main WHS concerns that the sensors could deal with, McDonnells 
agreed on the following three priorities: 

• Mobile equipment and pedestrian interactions, 
• Health and wellbeing of workers, and 
• Tracking workers in remote locations and working alone. 

Mobile plant- pedestrian interactions 
5. There are some manual operations (such as stacking, strapping, wrapping, quality 

inspections, segregation etc.) occurring in Mill 3 where workers can come in close contact 
with forklifts. Forklifts were observed in confined spaces having to maneuver between 
production lines and aisles with ground workers involved in packaging etc. Most critically 
ground workers are often in the vicinity of working forklifts. Though the visibility is 
reasonable (compared to loaders), there are no demarcated exclusion zones. Fortunately, 
there were no incidents in the past, however, it is a high-risk area from a WHS perspective. 
Generally, around 20 people work in Mill 3 with 2 forklifts operating most of the time.   
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Figure 1: Areas with Mobile Plant - Pedestrian Interaction. 

 
6. The 15 Ton loaders operating outside the mill (Mill 3 exit and Pack Docker zone) could 

come in contact with forklifts and ground workers in this confined space. The visibility of 
loaders is poor due to stacks of finished timber piled on the ground. In addition, the mobile 
plant operator (both forklift and loader) has lack of visibility due to blind spots caused by 
the size of the load carried (very long timber). When the loader-forklift and ground worker 
are present in these confined spaces, with a large and heavy timber load in front of the 
plant, there is a risk of contact collision. It must be noted that the stacks of products can 
block both people and drivers’ views entirely. 

 
Figure 2: Potential Blind Spots in the Yard. 
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7. The common hazardous situations observed on this site can be categorized into: 

• Moving plant and static worker, 
• Moving plant and moving worker, 
• Two-pieces of moving equipment, especially when a forklift and a loader are closer 

to each other.  
8. At present most of these risks are handled through administrative controls. When 

administrative controls fail, a reliable real-time proximity detection and alert system is 
needed on this site to provide ground workers with another layer of safety protection. All 
agreed that proximity sensors are the highest priority for this site.   

Health and wellbeing of workers 
9. Heat is a problem within the mill. It is important to monitor the health of workers, 

especially the possibility of de-hydration and it would be an easy sell among workers. 
Worker health fed into an App could help monitor workers, rotate them according to their 
health condition, and allow enough breaks in between work. The type of an alarm could be 
visual, auditory, vibrating or a combination of them. McDonnells staff felt visual cues are 
more important than alerts to a worker’s mobile phone in the form of auditory or vibration 
signal (due to the noisy environment within the mill).  

The current site has mist fans to operate in hot days. However, there is no measurement 
taken on the effectiveness of these mist fans. 
 

Tracking workers in remote locations and working alone 
10. It is important to monitor workers in remote locations such as the de-barking area, 

especially when they are alone. This applies to contractors as well. It becomes critical to 
know people’s exact location in emergency situations when there is a need for evacuation.  

 
OneFortyOne Jubilee Sawmill, Mount Gambier, South Australia  
 

1. The research team introduced the aim and objectives of the project and the main items 
discussed where the best situation to use and place to locate the sensors. Embedding 
them inside a safety vest was not favorable to OFO employees as the temperature of 
some of the enclosed workspaces such as dry mills could go up to 40-45C during 
summer (despite having large fans to disperse the heat) when the outside ambient 
temperature is around 34-35C. Other options discussed were the safety helmet, 
goggles or boots. Similarly, a hard hat is not required for the current staff (required for 
visitors). However, protection glasses are compulsory. 

2. OFO employees interviewed identified and prioritized the following as their main 
WHS concerns within the site. 

• Mobile plant-pedestrian interactions 
• Manning pedestrian crossings in heavy mobile-plant movement areas 
• Contractor management 
• Work in isolation or remote areas 

 
Mobile plant-pedestrian interactions 
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3. The major WHS concern in OFO is the mobile plant-pedestrian interaction which 
could lead to accidents or near misses particularly in confined areas. This was 
confirmed by OFO employees as well as our observations. 

 
 

Figure 3: Areas with Mobile Plant-Pedestrian Interaction. 
 

4. Forklifts are the main mobile plant used inside Dry Mill A and B. There is a 3m 
exclusion zone between the forklift and ground worker within enclosed spaces 
demarcated by a blue static colour arc light from the forklift. The blue light is intended 
to alert workers of their proximity to the forklift. However, there are confined spaces 
which do not provide a 3m safe zone, particularly when the plant is turning around 
with timber on it. Packaging and Tally desk in Dry Mill B could be identified as one 
of the confined areas with constant movement of a forklift. It is noted that the blue 
lights mark points and do not cover 360 degree zones. The blue light may be missed if 
it is not directed at the workers. 

5. Workers would normally step outside the production area as soon as they see a 
forklift. However, when they are heavily concentrating on a job or get used to the 
constant movement of forklifts, complacency can creep in which poses a hazard to the 
worker. In addition, when someone steps inside the production area, they could hit by 
stationary or moving objects or caught in between objects (machine). The stacks of 
products and the physical layout of the factory floor may not give the workers safe 
zones to move to in an emergency. 

6. During summer, the temperature inside dry mills could exceed 35C and the fans could 
increase the noise levels which combined with worker fatigue during a 10hr shift 
could very easily distract the concentration of a worker. The repetitive nature of tasks 
can cause workers to experience a decrease in awareness as well as limited visibility 
for forklift operator.  

7. The other factor that could lead to accidents would be ‘domestic blindness’ and the 
fact that workers getting used to the movement of forklifts and the demarcation blue 
lights. Change of color, when tested, did not work. A flashlight, something that is 
dynamic, with an irregular pattern could help get the attention of workers.     

8. The other issue we discussed was the change of light vision of the forklift operator 
between open areas and enclosed areas of the timber mill. The constant movement 
between open areas with sunshine to shed lighting could affect the operator’s reflexes 
and impact the ability to negotiate the plant’s movement when a pedestrian is in the 
transition zone. 
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Figure 4: Change of Light Vision of the Forklift Operator Between Open Areas and 
Enclosed Areas. 

 
9. There is a 5m exclusion zone in the log yard.  

 

 

Figure 5: Exclusion Zone in the Log Yard. 
 

10. The speed limit for mobile plant inside enclosed areas is 10km/h whereas in open 
areas it is 15-20km/h.  

11. The current smart tracking system employed for forklifts is not robust enough. 
Forklifts have GPS installed and can track outside but not inside locations where the 
GPS signal fails. Accuracy of speed tracking speed is poor. 

12. The timber stacks obstruct the view of mobile plant in open areas posing collision 
hazards.  

13. One of the other concerns is prevention of collision between two forklifts or between a 
forklift and a contractor’s vehicle (for example maintenance) inside dry mill areas.  

14. In summary, the risk of contact collision between ground worker and forklifts was 
found to be very high. Therefore, all agreed that providing alerts in real-time when 
hazardous proximity conditions were present between forklifts and ground workers is 
a priority for OFO.   
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Manning pedestrian crossings 
15. There are 4 cross-over points which are accessed using manual gates. Can they be 

automated based on mobile plant movements? Mentioned in the conversation about 
putting sensors in work boot or other wearable sensors to detect worker at the gate. 

 
 

Figure 6: Manual Gate to Separate Pedestrian and Mobile Plant. 
Contractor management 

16. OFO receives a number of contractors and other short-term visitors to the site 
regularly. Though they are being instructed to be within certain designated zones 
(such as driver rest area) and inside their vehicles etc., it is difficult to monitor their 
movements. Tracking their location would be very useful to the security and WHS 
personnel, particularly during an emergency. At the entry and exit they sign a visitor’s 
book. However, there are plans to introduce a swipe card in the future for regular 
contractors. A clip-on e-tag with GPS could be a solution for tracking their 
movements.   

 
Work in isolation 

17. There are situations where workers must be in remote and isolated areas working 
alone. Currently there is a ‘call in man-down system’. However, a better automated 
system would be very useful from a WHS perspective.  

18. Contactors may move to different sites (getting new jobs on the run), making it 
difficult to track the last location.  

 

Based on the Phase 1 result, four safety concerns / scenarios were identified as the priority of 
this project.  

1. Human to Vehicle (Forklift and Truck) – indoor 
2. Human to Vehicle (Forklift and Truck) – outdoor 
3. Vehicle to Vehicle – indoor (less common) 
4. Vehicle to Vehicle - outdoor 
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Appendix 2 – Factsheet  
NIF083-1819 

Wearable Sensors for Improving Occupational Health and Safety of 
Workers in the Forestry Industry 

 
Executive Summary 
 
This project has a primary goal of understanding 
the needs, challenges, and opportunities of using 
sensor-based remote hazard monitoring and 
developing a workwear embedded with such 
technology for harvesting and sawmilling 
operations in order to ensure the wellbeing of the 
workers. 
 
The feasibility study suggests that the current 
proximate sensor based wearable devices are not 
suitable for the identified scenarios for reasons 
such as lack of required network infrastructure, 
extra hardware cost and potential accuracy due to 
signal interference. Therefore, the project team 
focused on developing an adaptable image-based 
object detection algorithm which can be easily 
implemented on a wide-range of devices (e.g. 
wearable smart devices on vest and helmet, 
centrally mounted cameras) to meet the project 
objectives. 
 
Why we need to develop a sensing system for 
forestry workers? 
 
Due to the hazardous working environments in the 
forestry sector, workers frequently face safety and 
health risks throughout the supply chain. 
Automated hazard monitoring systems based on 
sensor and short-range communication 
technologies, can acquire data, convert it to 
structured information, and immediately deliver 
these to the worker as an early warning for 
corrective action; considered one of the most 
promising methods to help manage these risks. 
 
Approach 
 
The Internet of Things (IoT) trend is well underway 
in Machine-to-Machine (M2M) communications 
and is poised to radically change the world’s 
business environment. However, the availability of 
powerful inexpensive small sensing devices 
coupled with a communication network allow 
previously impractical applications to  become 
possible, such as wearable sensor system for 
worker safety with real-time monitoring and 
warning.  
 
UniSA, with industry partners N.F. McDonnell & 
Sons and OneFortyOne and funded by NIFPI, 

developed a solution adopted from currently 
available machine vision / object detection 
technology, the core of which is a machine learning 
model based on image data.  
 
With respect to the future embeddable 
requirements, the project team decided to develop 
a mobile application using the standard on-device 
cameras with a proof of concept AI algorithm to 
test its suitability.  
 
A DIY helmet mounted system (smart phone) was 
used to capture a video footage during the field trial 
in a work environment and the video was analysed 
frame by frame.  
 

 

 

Four safety concerns / scenarios were identified as 
the priority of this project. 1. Human to Vehicle 
(Forklift and Truck) – indoor, 2. Human to Vehicle 
(Forklift and Truck) – outdoor, 3. Vehicle to 
Vehicle – indoor (less common) and 4. Vehicle to 
Vehicle – outdoor. 
 

 
 
In the first stage, if object is detected then the 
box is drawn in the picture. The % is the 
threshold of the object boundary in 
relationship to the object type – for example, 
the software produces an initial estimate of 
49% confident that within this area there 
could be a person. In the second stage the  
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detection. In the trial this resulted in a better 
than 90% accuracy. It could be expected that 
this could be improved with further testing. 
 
The testing was able to cover all scenarios 
including both in-house and outdoor, ideal vs 
sub-optimal lighting condition, people to 
vehicle and vehicle to vehicle. This algorithm 
is capable of detecting three objects: trucks, 
forklifts and human in an accurate and efficient 
manner. 
 
Project Highlights 
 
• This project has successfully identified and 

assessed health and safety hazards of forestry 
operations based on literature, past accident 
data, interviews and observation/work-studies 
carried out in the field / identify the parameter 
requirements for hazard monitoring in forestry 
operations against readily available sensors.  

• This development also aims to minimise 
development and implementation costs by 
carefully selecting low cost and easy to 
maintain components, and with a shared cost 
arrangement as part of the existing personal 
protection devices. 

• Several successful measures (e.g. accuracy, 
adaptability, etc) and coverage scenarios 
emerged as the testing base for the proof-of-
concept system with image processing 
accuracy of >90%. 

• This project has successfully designed and 
delivered an image-based detection algorithm 
which can accurately detect vehicles and 
humans to alert for potential collisions. 

 
Potential Benefits 
 
• The proposed sensing system is expected to 

help prevent work-related injuries in forestry 
operations, in addition to help maintain the 
health and wellbeing of workers. 

• It could reduce work-related injury expenses 
such as insurance claims, lost days and lost 
productivity.  

• As an indirect impact, it could improve the 
productivity of a worker as they are alerted on 
the work environment to provide real-time 
safety situation-awareness that workers feel 
safer. 

• It is expected that the mobile devices can be 
mounted on the vest, helmet and other 
personal wear. In addition, the application can 
also be easily modified for other embedded 
devices in the market. 

 
What’s Next? 
 
Explore implementation and commercialisation 
options and the development of an implementation 
project to further confirm the applicability.  
 
Future options 
It was found that existing off-of-the-shelf 
algorithms to identify the proximity and direction 
of movement of a vehicle based on image 
processing techniques could be used in the future 
commercial development. If the camera is mounted 
in a relatively fixed position (e.g. on top of a 
forklift or helmet), it is possible to derive distances 
between two tracked objects through triangulation 
by calculating the angle of the ground surface. 
However, this can be complex as both objects may 
be moving and this information needs to be 
calculated rapidly, multiple times per second, and 
then linked to the potential impact algorithm to 
identify and alert of possible impacts. 
 
Additional resources and efforts are required to 
move the project from POC to a minimum viable 
product for implementation including alters. Some 
required works include: 
 
• Selection of hardware devices (e.g. centrally 

mounted devices vs wearable devices) will 
impact on the image detection algorithm 
training and tuning as well as alerting 
methods. 
 

• Organisation-specific solution vs generic 
solution will impact on the development cycle 
and overall resource requirement. 

 
What have we discovered and achieved? 

 
• Image-based object detection can improve 

safety in the identified scenarios with high 
accuracy; 

 
• An app can be installed on Android phones 

and tablet for organisations to trial the 
algorithm; 

 
• Flexible options (decentralized vs centralized 

monitoring) are required to move the POC to 
the next stage. 

 
Contact 
Dr. Jim O’Hehir | General Manager Forest Research, 
UniSA STEM, University of South Australia 
jim.o’hehir@unisa.edu.au 
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Appendix 3 – Implementation Project Plan 
 

Intelligent Image-based Hazard Identification System for Worker Safety in 
Forestry Operations (HISWSFO) 

 
 
Driver of need 
The estimated direct cost of human-vehicle accidents to the South Australian forestry industry 
is $1,050,000 per annum (as a minimum accounting only for lost days and medical costs)*. 
This does not address the full cost of injuries nor reflect the human cost to staff. Legal 
obligations of duty of care require the continuous improvement of safety in a workplace. 
Description 
Forestry operations are typically characterised as physically demanding tasks that are often 
performed in harsh environments, therefore frequently exposing staff to safety risks. An 
automated hazard monitoring system based on sensor and short-range communication 
technologies; can acquire data, convert it to structured information, and immediately deliver a 
‘notification’ to a worker as an early warning to trigger a corrective action. This is considered 
one of the most promising methods to help manage these risks.  
A proof-of-concept National Institute for Forest Products Innovations (NIFPI) project 
“NIF083-1819 Wearable Sensors for Improving Occupational Health and Safety of Workers 
in the Forestry Industry (2019-2020)” has identified and assessed safety hazards in forestry 
operations based on literature, past accident data, interviews and observation/work-studies 
carried out in the field. It also identified the parameters required for hazard monitoring in 
forestry operations against readily available sensor systems via a technology scan. The project 
has successfully delivered an image-based detection algorithm which can accurately detect 
heavy equipment and staff (>90% accuracy) to alert for potential collisions.  
Application 

UniSA, with industry partners N.F. McDonnell & Sons and OneFortyOne and co-funded by 
NIFPI, developed a prototype solution adopted from currently available machine vision / 
object detection technology; the core of which is a machine learning model based on image 
data. With respect to the future embeddable requirements, the project team selected a 
mobile application (for use with mobile phones and tablets) using the standard on-device 
cameras with an artificial intelligence (AI) algorithm. This camera system is intended to be 
worn / mounted on the worker’s personal protective equipment (PPE) or a forklift to capture 
video image in the field / work environment with real-time image processing to provide a 
safety warning. 

Stage of Development 

Based on the developed prototype, a do-it-yourself (DIY) helmet mounted system (for a 
smart phone) was trialled to capture video footages in a real work environment and the 
video analysed frame by frame. Four safety concerns / scenarios were identified as priority: 
1. Human to vehicle (forklift and truck) – indoor, 2. Human to vehicle (forklift and truck) – 
outdoor, 3. Vehicle to Vehicle – indoor (less common) and 4. Vehicle to vehicle – outdoor. 
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Figure 1: An illustration of object detection system for a single image indicating the % 

detection threshold.  
 
In the first stage of development, if an object is detected in single image a box is drawn 
around the object in the image.  
As shown in Figure 1, the percentage is the threshold of the object boundary in relationship to 
the object type in a single image – for example, the software produces an initial estimate with 
49% confidence that within this area there could be a person. In the second stage the software 
used our trained algorithm to confirm the detection. In the trial this resulted in a better than 
90% accuracy in the real work environment. It is expected that this could be improved with 
further testing.  An important point is that the system makes use of video streams, hence 
multiple video frames (images) are used for the image analysis process; this is a fundamental 
step for improving the accuracy of detection. 
The testing was able to cover all scenarios including indoor and outdoor, ideal compared to 
sub-optimal lighting conditions, people to heavy-equipment and heavy-equipment to heavy-
equipment. This algorithm can detect multiple objects at the same time: trucks, forklifts, and 
humans in an accurate and efficient manner.  
Unique Selling Point 
The project aims to minimise development and implementation costs by carefully selecting 
low cost and easy to maintain components, and with a shared cost arrangement as part of 
existing PPE devices. It was found that existing off-of-the-shelf algorithms to identify the 
proximity and direction of movement of a vehicle based on image processing techniques 
could be used in future commercial developments with an upgradable pathway. If a camera is 
mounted in a fixed position (e.g. on top of a forklift or helmet), it is possible to derive 
distances between two ‘tracked objects’ through triangulation by calculating the angle of the 
ground surface. However, this can be complex as both objects may be moving, and this 
information needs to be calculated rapidly, multiple times per second, and then linked to the 
potential impact algorithm to identify and alert of possible impacts. In short, the system can 
be considered as a simple, flexible, and low-cost universal solution. 
 
Business Case 
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The adoption of the proposed early warning sensor system to remotely detect safety hazards 
and trigger timely warnings could reduce occurrence of some of injuries happening through 
the proposed direct mechanisms (assuming a 50% adoption rate of the technology resulting in 
a 60% reduction in accidents for our impact calculations).  
The proposed project 
The project team proposes to run a 9-month development and implementation project (a 6-
month trial / field test + 3-month fine tuning and report preparation). The following variables 
are proposed to provide 6 scenarios: 

• Test situation:  

1. Human to vehicle (forklift and truck) – indoor  
2. Human to vehicle (forklift and truck) – outdoor  
3. Vehicle to vehicle – indoor (less common) 
4. Vehicle to vehicle – outdoor. 

• The following camera mounting locations are proposed:  

1. PPE - helmet  
2. Forklifts 
Funding (cash) requirements: $60K ($45K Research Assistant, $10K hardware and $5K travel 
/ site visit). The project plan is shown below: 
 

 Month 

 1 2 3 4 5 6 7 8 9 

Kick-off meeting / plan field trail          

Initial design and lab testing          

Field Trial           

Initial report to industry partners           

System fine tuning & report preparation          

Final report and project completion          

 
Risk Assessment 
COVID impacts on delay in field trial and data collection. 
A risk to be managed is the potential for trust issues, that such technology allows managers to 
track individual staff onsite. 
Expected Outcomes 
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The resulting sensor system is expected to help reduce work-related injuries in forestry and 
processing operations and to help maintain the wellbeing of staff. It could reduce work-related 
injury expenses such as insurance claims, lost days, and lost productivity and most 
importantly the human impact of injury. In addition, a real-time continuous safety monitoring 
system can give staff the confidence that their work environment is safe providing a feeling of 
being protected at work. In such safe work environment, it could improve staff productivity as 
an indirect impact.  
 
*Annual figure is the total average cost of accidents to the industry based on SafeWork SA’s compensation claims database. It is used to 
determine the estimated impacts of this project for next five years based on an assumed 50% adoption rate for this technology. The estimated 
cost of accidents to the South Australian forestry industry is $1,050,000 per annum (accounting only for lost days and medical costs). The 
estimated economic benefit to the industry from the project for next 5 years is based on 67% of injury mechanisms that are directly relevant 
(wearable sensor-based applications could mediate direct mechanisms) and an assumed 60% reduction of those accidents due to the adoption 
of this technology by 2026.  
 
Cost of accidents  $1,050,000 

Contributions from direct mechanism 0.67 

Proportion of reduction 0.6 

Adoption rate 0.5 
 
This will have an incremental $ impact for the next five years with a steady state by 2026 as follows.  
 
2022 $42,210.00  
2023 $84,420.00  
2024 $84,420.20  
2025 $126,630.20  
2026 $211,050.20 

 


	Introduction
	Methodology
	1. Reviewing Australian and international best practice guidelines and standards on protective guarding of mobile plants.
	2. Collecting and reviewing Australian incident reports related to the cabin protection, which were provided by the forest growers.
	3. Re-formatting PF-Olsen best practices guidelines using literature review and incident reports.
	4. Consulting with the industry steering committee to prepare the first draft of the best management practices.
	5. Conducting 3 webinars with several industry participants to collect the feedback on proposed best management practices.
	6. Finalising the document and laying it out according to the safety standards and the forest industry preferences.
	7. Delivering final document to the industry steering committee members
	Results & Discussion
	Conclusions & Recommendations
	Appendix 1: Industry document output
	Best Practices Document
	MT0084_FIRC001_BEST PRACTICE GUIDELINES v8.pdf
	Summary
	Introduction
	Scope
	Objective
	Requirements

	Background
	Concept
	Methodology
	Incident Reports
	General Recommendations

	Definitions
	Regulations and Standards
	Equipment Guidelines
	Timber felling and processing equipment
	Feller Buncher and Directional Fellers
	Harvesters and Processors
	Chippers, Flails and Grinders

	Extraction Equipment
	Skidders
	Crawler Tractors
	Forwarders
	Shovel Loggers
	Yarders

	Other Forest Operations Equipment
	Log loaders
	Excavators and Backhoes (earthmoving)
	Bulldozer


	Labelling requirements
	Risk assessment requirements for equipment

	Appendix A – Related documents
	Other references
	Acknowledgement

	NS025_Cover_Innerpage  Mt Gambier Approved.pdf
	Executive Summary
	Introduction
	Level two heading
	Level three heading


	Methodology
	Sampling method (level two heading)
	Level three heading


	Results
	Discussion
	Conclusions
	Recommendations
	References
	Acknowledgements
	Researcher’s Disclaimer (if required)
	Appendix

	NS023 NIFPI-Final-Report_Rev No  covers FINAL.pdf
	Executive Summary
	This report describes the results of a vision-based collision prevention system trialled at timber mills in Mount Gambier, South Australia to investigate its applicability in real world surroundings. The results of this study provide a novel approach ...
	Introduction
	The forestry is considered as a hazardous industry based on its health and safety record (Gejdos et al., 2019). Forestry operations rank highly in terms of fatality rates, especially harvesting operations (Melemez, 2015). Forestry operations pose a hi...
	The Internet of Things (IoT) is bringing the internet into every aspect of work environments – from engineering to health, infrastructure, agriculture, providing a revolution of connected sensing technologies and communication platforms. Despite signi...
	The availability of powerful yet inexpensive small sensing devices coupled with communication network allow applications which previously not being possible, such as wearable sensor system for worker safety with real-time monitoring and warning. The a...
	The most popular development in the construction and mining sectors is proximity sensors used to monitor and alert the worker amidst a plethora of large moving equipment on sites (Teizer and Cheng, 2015). These technologies are capable of monitoring a...
	Benefits of individual wearable sensors or systems can be integrated based on their attributes for multi-parameter monitoring of ergonomic and safety performance. While the existing sensor technology is being trialled in many industries, their applica...
	Methodology
	Results
	Discussion
	Conclusions
	Recommendations
	References
	Acknowledgements
	Researcher’s Disclaimer (if required)
	Appendix 1




