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Executive Summary 
 

This project aimed to continue development and application of single-step genomic selection in the 

Australian hardwood breeding programs supported by Tree Breeding Australia (TBA) and its members 

for the benefit of the national hardwood forest industries.  The project has enabled further adoption of 

genomics technology into tree breeding through the generation of new foundational data sets for the 

Eucalyptus nitens breeding program and the addition of new genotype and sequence data sets for the 

Eucalyptus globulus breeding program. These data sets now capture most of the variation segregating 

in these breeding programs and will underpin future steps in delivering routine genomic prediction 

including in the important step of designing low-cost assays for routine genotyping. The research has 

developed and tested methods for imputation and pedigree recovery and has applied these to non-

eucalypt breeding pedigrees.  

Importantly, the outputs of this project have already impacted operational breeding with the data 

created in this project joined with previous data sets and incorporated into TREEPLAN runs in 2021. 

This implementation realised the goal for joint use of data sets created through different technology 

platforms.  

This project has achieved its main objectives of building foundational data sets and developing and 

testing methodologies further setting up the Australian forest industries for a non-disruptive 

implementation of genomic breeding into the national forest tree breeding programs. Implementation 

of single-step prediction in 2021 TREEPLAN evaluations indicates increasing impact on breeding 

decision making. This is being driven by the growing size of the genomics data sets which is improving 

EBV accuracy and increasingly enabling the inclusion of new unmeasured germplasm for early 

selection. Increased EBV accuracy and early selection impact both the rate of genetic gain and the 

efficiency of breeding operations and these efficiencies flow through to industry with better germplasm 

available for planting which increases plantation estate productivity, resilience, and profitability.  

 

 

 

 

 



National Institute for Forest Products Innovation - Project No: NIF111-1819 

ii 

Table of Contents 

 

Executive Summary ............................................................................................................................. i 

Introduction .........................................................................................................................................1 

Methodology .......................................................................................................................................2 

Results ...............................................................................................................................................4 

E. nitens sample collections ............................................................................................................4 

E. nitens discovery collection ......................................................................................................4 

E. nitens training collection .........................................................................................................4 

Sequence E. nitens discovery collection ..........................................................................................8 

Development of SNP Discovery Pipeline .........................................................................................9 

Generating SNP sets for use in the project ......................................................................................9 

Generating EGLOB HD SNP Set 1 .............................................................................................9 

Generating ENIT HD SNP Set 1 ............................................................................................... 12 

Generating EGLOB LD SNP Set 1 ............................................................................................ 12 

Development of imputation pipelines ............................................................................................. 13 

Pipeline 1 ................................................................................................................................. 13 

Pipeline 2 ................................................................................................................................. 14 

Pipeline 3 ................................................................................................................................. 15 

Imputation testing ......................................................................................................................... 15 

Imputation Tests 1 .................................................................................................................... 17 

Imputation Tests 2 .................................................................................................................... 18 

Imputation Tests 3 .................................................................................................................... 19 

Investigation of the intersection of low- and high-density SNP sets ................................................ 20 

Intersection 1 ............................................................................................................................ 20 

Intersection 2 ............................................................................................................................ 20 

Intersection 3 ............................................................................................................................ 21 

Operational demonstration of genomic selection in E. globulus ..................................................... 22 

Construction of a consolidated GRM ......................................................................................... 22 

Single-step analysis in E. globulus with a consolidated GRM .................................................... 26 

Run 2021 TREEPLAN E. globulus data with 2020 version of GRM............................................ 32 

Single-step analysis in E. nitens .................................................................................................... 34 

Development of pedigree forensics pipelines ................................................................................ 37 

SEQUOIA ................................................................................................................................. 39 

GRM-NRM comparison tool ...................................................................................................... 39 

Discussion ........................................................................................................................................ 41 

Conclusions ...................................................................................................................................... 44 

Recommendations ............................................................................................................................ 45 

References ....................................................................................................................................... 46 

Appendix 1 ........................................................................................................................................ 47 

Appendix 2 ........................................................................................................................................ 48 



National Institute for Forest Products Innovation - Project No: NIF111-1819 

1 

Introduction 
 

The primary objective of genomic integration is to increase the profitability of forest growing activities 

in Australia by increasing the rate and deployment of genetic gain through fast-tracking the selection 

of new parents to reduce the generation interval in breeding programs for E. globulus and E. nitens. 

The operationalisation of single-step genomic prediction methods into existing tree breeding systems 

is key to achieving this. To operationalise single-step genomic prediction we put forward the following 

objectives: 

1. Build foundational datasets upon which genomic selection can sustainably operate (reference 

genome built, medium-density sequencing of core pedigree, defining industry standard SNP sets). 

2. Build core methodologies and workflows needed to implement genomic selection in an operational 

setting (algorithms, imputation methodologies). 

3. Implement genomic selection at an operational scale in collaboration with industry partners (e.g. 

breeders, growers, deployers). Operationalising entails high-throughput genotyping, defining 

standard operating procedures and ensuring end-users have been well educated in the concepts 

and protocols regarding genomic prediction.  

This NIFPI project has enabled TBA and its research partner, Agriculture Victoria Research (AVR) to 

begin and complete activities associated with these objectives. It is stressed that a complete 

operationalisation of single-step genomic prediction in both eucalypt species will span multiple 

research partitions.  

Research under this NIFPI project has had a particular focus on objectives 1 and 2 with less attention 

directed to objective 3. Our goal has been to establish and expand base resource data sets and 

analysis pipelines that will be used in multiple downstream steps to underpin implementation of 

genomics into the TBA tree improvement programs.  

We have focused on the analysis of the genomic resources, existing prior to, and generated during, 

this project, for the Eucalyptus globulus breeding program. While the genomic resources for this 

program are the most extensive for any of the TBA breeding programs, they are still short of the 

15,000 genotypes required for a full base training set and it will remain a key objective to continue to 

expand these base resources in future projects. As the project progressed it was agreed between 

project partners that the analysis focus should shift to the data sets available for E. globulus as the 

most extensive data sets are available in this program and focus on these data would enable more 

extensive testing and simplify transfer between species in future projects. This change in focus was 

agreed from the initial milestone statements, which had a stronger focus on the analysis of E. nitens 

data sets.  
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Methodology 
 

(Note: we are using the Methodology section to briefly outline the sequence of activities in the project. 

The Results section will then describe in more detail methodology and results specific to each of the 

activities listed below). 

The project was implemented using an adaptive approach with continuous review of project needs and 

priorities. This approach led to changes in project activities and details of specific project 

implementations based on assessment of the resources available for implementation of specific steps. 

Some adjustments were direct results of changes arising from COVID-19 impacts which included 

delays in data generation in the middle of 2020 due to the Victorian lockdowns. Overall, COVID-19 

impacts were restricted to changing within project priorities and did not impact the overall project 

delivery or success.  

The first two activities aimed to create founder and discovery collection for E. nitens. These activities 

were based on the ongoing positive impact similar collections made in E. globulus in earlier projects 

have had and the aim was to develop comparable core data collections. The data sets were based on 

a detailed analysis of the pedigree and phenotypic records which drove germplasm collection 

activities. The germplasm collections were then assayed by whole genome sequence (WGS) methods 

to ensure a comprehensive survey and capture of the gene diversity in the Australian E. nitens 

breeding population. Prior to this project no accessible WGS data existed for E. nitens. These 

foundational data sets will have a long useful life and will be used in multiple activities in this and 

future projects.  

1. E. nitens sample Collections - Identify and sample foliage from the combined national E. nitens 

breeding population (comprising populations belonging to Forico and Sustainable Timber 

Tasmania). 

a. Foliage for the Discovery (Founder) Collection 

b. Foliage for the Training Collection 

2. Sequence E. nitens discovery collection - Generation of ~8-10x raw sequencing coverage for 

384 individuals. 

Our next activity was to design a SNP discovery pipeline that could be applied across all species (not 

just eucalypts).  

3. Development of SNP Discovery Pipeline  

Following the development of the SNP Discovery Pipeline we were then able to generate high-density 

SNP sets in both E. globulus and E. nitens. Additionally, a commercial SNP chip was used to generate 

a low-density SNP set in E. globulus. The low-density set provided us with the necessary data to test 

imputation pipelines and G matrix consolidation. 

4. Generating SNP sets for use in the project 

a. Generating the E. globulus high density (HD) set: EGLOB HD SNP Set 1 

b. Generating the E. nitens high density (HD) set: ENIT HD SNP Set 1 

c. Generating the E. globulus low-density (LD) set: EGLOB LD SNP Set 1 

When processing data at the level of SNP loci, it will be necessary to infer data that is missing or is 

error prone. Imputation refers to the process of inferring the missing data or replacing error prone data 

with substituted values of higher accuracy. A major component of this research partition has been to 

test various imputation methods, make recommendations and to build imputation pipeline prototypes, 

which can be adopted for routine use by industry. Three imputation pipelines developed and tested. 
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5. Development and testing of imputation pipelines  

a. Pipeline 1 – “filling-in” within a specific assay 

b. Pipeline 2 – imputing from low coverage WGS data to high-density SNP sets  

c. Pipeline 3 – imputing from low-density SNP chips to high-density SNP sets 

In our initial planning we indicated that we would demonstrate imputation from a low-density, 

commercial grade SNP chip to a high-density SNP set (e.g., imputing calls made from the EGLOB LD 

SNP Set 1 to calls on the EGLOB HD SNP Set 1). And furthermore, demonstrate the construction of a 

G matrix incorporating assay data from both low- and high-density platforms. As the project 

progressed, it became apparent that with the genomic resources currently available this demonstration 

would not be possible. The imputation testing indicated much larger reference panels would be 

needed to ensure successful imputation from low- to high-density SNP sets. Obtaining reference 

panels of appropriate size was outside the scope of this project, in any species, yet alone in E. nitens 

(which was originally going to be the target species for this demonstration). The project team decided 

on an alternative strategy, which was to construct a G matrix by incorporating data from the EGLOB 

LD SNP Set 1 and all other SNP assay data generated using either low- or high pass whole genome 

sequencing. Rather than impute up to a high-density set, we obtained the intersection of SNP between 

those featured on EGLOB LD SNP Set 1 and those SNP discovered de novo from our WGS work. 

This combined SNP set was used in TREEPLAN runs in 2021. 

6. Investigation of the intersection of low- and high-density SNP sets 

a. Intersection level 1 – match Euc72K probes to RaGOO assembly (the latest up-to-date 

assembly available to AVR) 

b. Intersection level 2 – SNP passing level 1 that are included in EGLOB HD set 1 

c. Intersection level 3 – Intersect de novo WGS SNP with Euc72K SNP using E. grandis 

genome assembly Version 2.0 (both WGS SNP and Euc72K reference this assembly) 

The next activity was an operational demonstration of genomic selection in E. globulus. The 

intersection of de novo WGS SNP with Euc72K SNP resulted in 17,103 SNP that were used in the 

construction of a GRM for use in a TREEPLAN analysis. All available assayed individuals including 

approximately 2,000 recently assayed juveniles (new progeny that have not been measured), were 

included in the GRM.    

7. Operational demonstration of genomic selection in E. globulus  

a. Construction of a consolidated GRM 

b. Single-step analyses in E. globulus with a consolidated GRM 

Though we did not demonstrate imputation and consolidation of G matrices in E. nitens we were able 

to demonstrate the impact of more genomic data in this species. This led to the next activity. 

8. Single-step analyses in E. nitens 

The final activity completed in this NIFPI project was to build and test a pedigree forensics pipeline. 

Part of this development was to investigate the appropriateness of a public domain software package 

called SEQUOIA for undertaking pedigree forensics using genotype call data on individual SNP. 

Another aspect of the development was to write a software tool that would undertake pedigree 

forensics by comparing relationship coefficients obtained in the G and A matrices. In-silico simulation 

of scenarios and the testing of software was a feature of this investigation.  

9. Development of a pedigree forensics pipeline  

a. Build and test pipeline using in-silico simulation 

b. Prototype pipeline with real data  



National Institute for Forest Products Innovation - Project No: NIF111-1819 

4 

Results 

E. nitens sample collections 
E. nitens discovery collection 

Individuals in the discovery collection were identified by computing the “contribution matrix”, which is a 

lower triangular matrix containing the fraction of genes that individuals (in this case the founders) 

passed to descendants (in this case the named, 2nd generation individuals). In most breeding 

programs a few founders contribute most of the genes to the later generations. This is certainly true in 

E. nitens. One hundred and forty-two founders (native mothers) have contributed 97% of the genes to 

second-generation, named genotypes. Our strategy was to sample as many as possible of the direct 

descendants of these 142 founders, as the native mothers themselves have since been destroyed. 

Unfortunately, most of the 1st generation breeding trials have also been destroyed and the best hope 

of recovering foliage is from the older breeding facilities where clones of 1st generation selections 

remain archived. 

 

 
Figure 1 Important founders, sorted by their fractional contributions to named, 2nd generation genotypes 
in the national E. nitens pedigree. 

Lists of 173 and 27 descendants were distributed to Forico and Sustainable Timber Tasmania (STT), 

respectively. Forico were able to sample 160 from their list and SST were able to sample 23 from 

theirs. Both organisations were asked to provide foliage from genotypes they wished to include in the 

discovery collection. Forico provided foliage for a further 118 genotypes and SST provided foliage for 

a further 50 genotypes. 

There were 351 genotypes sampled in total by partner organisations for the E. nitens discovery 

collection. The samples were sent to AVR facilities in Bundoora for DNA extraction, library creation 

and sequencing. DNA libraries were generated for 339 samples. It is typical for the library creation 

step to fail in a small minority of cases. It was decided to include 45 recent E. globulus parents in the 

Collection to make up the numbers for a complete plate (384 wells).  

E. nitens training collection 

A training collection will need to comprise a substantial number of individuals (two to three thousand) 

that have been measured phenotypically, and DNA assayed. There is already a sizeable number of 

measured individuals assayed via the Gondwana assay (1381). However, the Gondwana assay is a 

very low-density assay (less than 3,000 SNP) and the existing number of measured and assayed 

individuals is perhaps adequate for training this SNP set.  We have set in place a plan for obtaining a 

training data set for the eventual industry standard, high-density SNP set, once it has been finalised. 

The plan entails 
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• retrospective genotyping (i.e. sampling older, first generation progeny trials) 

• resample progeny already assayed with the Gondwana SNP set, for assaying with the future 

high-density SNP set 

• assume existing training individuals (albeit for a very small SNP set) will also be relevant for 

training a much larger SNP set  

The latter individuals will only be useful for training a high-density SNP set if imputation from low- to 

high-density SNP sets is successful. Research completed to-date in E. globulus suggests that a 

sizeable reference population will be required for successful low- to high-density imputation.  

Table 1 shows the distribution of the majority of the 1381 E. nitens individuals assayed using the 

Gondwana SNP set in terms of trials they were measured in and which selection criteria the 

measurements map to. Selection criteria with no measurements mapped to them have been 

highlighted in grey. It can be seen there are currently no assayed individuals measured in dry site 

types (all ages) or high site type (late age), nor individuals measured for some of the wood quality 

traits such as BD_disc (all ages) and BD_core (early age) and Cellulose_core (latter ages). In 

addition, there is nothing measured for: Stem straightness; Branch quality; KPY; Pilodyn; and Acoustic 

Velocity. Our retrospective genotyping strategy was to target trials from which we could obtain 

samples from individuals with measurements on “missing” traits. 
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Table 1  Distribution of measured progeny assayed with Gondwana chip by trial and measured phenotypic trait. 

 
 

 

 06011 
Hudlers  

01031 Cold 
Hardy Trial 
Middlesex 
Spur 9 

97045 Open 
Pollinated 
Trial Blythe 
Rd 

98041 2nd 
Gen 
Selection 
West Ridgley 
 

95051 2nd 
Gen 
Selection 
Jacksons 
East 

81043 
Hampshire 
Extension 

97071 Clonal 
Trial Kelatier 

97041 OP 
Trial 
Loudwater 
Rd 

86015 West 
Ridgely NSW  

95052 2nd 
Gen 
Selection 
Guide Rd 

81041 
Hampshire 
Seed 
Orchard 

Number 
observ-
ations 

trial 398 269 206 62 50 33 30 29 26 23 20 1146 

ASFrost_Cold_01  269          269 

ASFrost_Cold_02_04            0 

BD_core_04_07            0 

BD_core_08_15 396 269  44 35     15  759 

BD_core_16_29   198         198 

BD_disc_04_07         1   1 

BD_disc_08_15            0 

BD_disc_16_29            0 

Cellulose_Core_04_07            0 

Cellulose_Core_08_15 397 268  44 35     15  759 

Cellulose_Core_16_29   204         204 

DBH_Dry_02_03            0 

DBH_Dry_04_07            0 

DBH_Dry_08_15            0 

DBH_Cold_02_03   206         206 

DBH_Cold_04_07  269 206         475 

DBH_Cold_08_15  269 204         473 

DBH_Cold_16_29  269 203         472 

DBH_High_02_03    62     26   88 

DBH_High_04_07     50  30  26 22  128 

DBH_High_08_15    62 50  30   23  165 

DBH_High_16_29            0 

DBH_Normal_02_03        29    29 

DBH_Normal_04_07 398     33     20 451 

DBH_Normal_08_15 398       29    427 

DBH_Normal_16_29            0 

Ht_Dry_01            0 

Ht_Dry_02_03            0 

Ht_Cold_01            0 

Ht_Cold_02_03  179          179 

Ht_Cold_04_07  269          269 

Ht_High_01            0 

Ht_High_02_03            0 

Ht_Normal_01      33      33 

 398 269 206 62 50 33 30 29 26 23 20 1146 
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The majority of 1st and 2nd generation trials in E. nitens have been felled or destroyed, which limits our 

capacity to retrospectively genotype. However, the STT managed Meunna 1st generation trial is still 

active, and it makes sense to sample from this trial as there are potentially high value progeny in this 

trial. Table 2 shows the number of high value progeny against selection criteria for this trial. A high 

value progeny is a progeny with multiple observations. One high value progeny is selected per family. 

There are over 400 potential families from which to sample one progeny. Sampling these progenies 

will help fill in the missing gaps in the training collection. These individuals have been measured for 

the missing traits such as stem straightness, acoustic velocity, and latter age growth in a high site 

type. 

Table 2 The numbers of high value progeny measured for various selection criteria in Meunna base 
population trial. 

 
 

Our collaborating industry partner Forico has an ongoing marker assisted selection (MAS) project with 

Gondwana Genomics. As part of that project, they have assayed up to 11,000 juveniles (new progeny 

that have not been assessed). Table 3 shows the numbers of juveniles that have been recently 

measured or are scheduled to be measured. The strategy is to re-sample approximately 2,000 of 

these individuals. The 2,000 individuals will eventually be assayed for the high-density SNP set once it 

has been finalised. Having a sizeable number of individuals assayed for both panels (the Gondwana 

panel and the high-density SNP set designed by AVR) will provide the necessary data to test and 

implement imputation from the low-density Gondwana panel to the high-density SNP set. 

 
 RP25208 Meunna 

base pop trial 

ASFrost_Cold_01  

BD_core_08_15 102 

BD_disc_04_07  

Cellulose_Core_08_15 101 

Cellulose_Core_16_29  

DBH_Dry_02_03  

DBH_Dry_04_07  

DBH_Cold_02_03  

DBH_Cold_04_07  

DBH_Cold_08_15  

DBH_Cold_16_29  

DBH_High_02_03  

DBH_High_04_07 416 

DBH_High_08_15 416 

DBH_High_16_29 413 

DBH_Normal_02_03  

DBH_Normal_04_07  

DBH_Normal_08_15  

DBH_Normal_16_29  

Ht_Dry_01  

Ht_Dry_02_03  

Ht_Cold_01  

Ht_Cold_02_03  

Ht_Cold_04_07  

Ht_High_01 415 

Ht_Normal_02_03  

KPY_disc_04_07  

KPY_core_08_15  

KPY_core_16_29  

Pilodyn_04_07 274 

Acvel_16_29 339 

BRQS_04_07  

BRQS_08_15  

STEMST_04_07  

STEMST_08_15  

ZSTEMST_04_07 416 

ZSTEMST_08_15 416 

 416 
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Table 3 Juveniles in Forico’s E. nitens tree improvement program, which have been assayed and are 
awaiting assessment. 

Trial Count To be assessed 

17012 Basils Spur 5 E. nitens Progeny Trial 3682 By 2022 

13012 Parrawe 11 Progeny Trial 1816 Before June 30 2021 

17011 Kingsclere Spur 1 Progeny Trial 1434 Has been assessed (yet to be entered) 

19011 E. nitens Progeny Trial, Rogetta rd, Hampshire 961 By 2023 

 

In summary, the training collection will be provided by the following 3 sampling efforts 

1. The LINK sample group achieved by resampling 2000 progeny in the recent “MAS” trials (17012, 

13012, 17011). These individuals will be assayed with the eventual high-density SNP set and 

have already been assayed with the Gondwana SNP set. They provide us with the data to enable 

imputation from a low-density SNP set to a high-density SNP set.  

2. The EXISTING group which encompasses approximately 1417 progeny that have been assayed 

for the Gondwana SNP set and have been measured and are currently mapped into TREEPLAN 

systems and potentially the remaining ~6,000 progeny that are yet to be measured. The hope is 

that genotypes for the high-density SNP set can be obtained via imputation. 

3. The RETROSPECTIVE group encompassing 420 high value progeny from the Meunna base 

population that will provide the “missing” phenotypic data.  

 

It is likely that gaps in the phenotypic data will remain. It is unlikely there will ever be assayed 

individuals with growth data observed on a dry site type. From our discussions with project personnel 

associated with E. nitens breeding (Kelsey Joyce and Dean Williams) dry site types no longer have 

any relevance. That is, it is unlikely material will ever be deployed to a dry site type. 

 

Sequence E. nitens discovery collection 

The whole genome sequencing (WGS) was completed using a combination of MiSEQ (PE 300+300) 

and NovoSEQ (PE 150+150) sequencing. The 339 E. nitens samples in the discovery collection 

yielded an average raw read coverage of 12.09x, with a range between 0.03x and 279x.  While the 

coverage range is wider than generally seen most of the samples had coverage between 6x and 12x 

with only a small number (12) with coverage below 4x.  Having a range of coverage is normal from the 

generation of sequence data. For the E. globulus parent selections the average coverage was 12.63x 

(range 2.8x to 103x) with 5 samples having coverage less than 4x. Coverage results for each sample 

is provided in Appendix 1. 

Raw sequencing data in the form of files of zip archived fastq format DNA sequence reads are 

currently stored on the AVR BASC computer system. These have been generated and flagged for a 

storage period of four years. All raw fastq format sequencing data is available for transfer to TBA at 

their request via the AVR SFTP server. TBA are currently reviewing their genomic data storage needs 

and will soon come to a decision on how best to archive such data. 
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Development of SNP Discovery Pipeline 
SNP discovery requires pipelines that can analyse de novo whole genome sequence. The main 

pipeline implemented and developed in this work is based on the GATK workflows. GATK stands for 

Genome Analysis Tool-Kit and is a collection of command-line tools for analysing high-throughput 

sequencing data with a primary focus on variant discovery. The tools can be used individually or 

chained together into complete workflows. The final pipelines implemented in this work followed as 

closely as possible the developed GATK end-to-end workflows, called GATK Best Practices and were 

developed using the available E. globulus genomic resources. We were able to successfully generate 

a high-density SNP set in E. globulus, which we refer to as HD SNP Set 1, using this pipeline. An 

outline of the pipeline for creation of HD SNP Set 1 is shown in Figure 2. 

 

 
Figure 2 Pipeline for SNP discovery to create HD SNP Set1. Variant discovery followed GATK’s “best 
practices” workflow for germline short variant discovery, by running CombineGVCFs to consolidate 
gVCFs and GenotypeGVCFs to perform joint genotyping. Due to the current lack of a E. globulus dbSNP, 
GATK4 BQSR was not used. 

Generating SNP sets for use in the project  
Generating EGLOB HD SNP Set 1 

The de novo SNP discovery used a set of 963 whole genome sequence data sets from 963 individual 

E. globulus trees where the average genome sequence coverage was greater than 6. The raw variant 

call format (VCF) data file was filtered using SAMtools and BCFtools (Danecek et al. 2021) to a set of 

bi-allelic markers polymorphic at a minor allele frequency of 1% and for sites with less than 10% 

missing data. Fill in imputation and phasing of this data set was then done using Beagle (Beagle 5.1; 

Browning et al. 2018; Browning and Browning 2007) for imputation and Eagle (Eagle 2.4.1; Loh et al. 

2016) for phasing. The sequence data input was generated in previous projects and was aligned 
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against the interim RaGOO (Alonge et al. 2019) chromosome scaffolded reference genome being 

assembled by AVR with the complete chloroplast and mitochondrial genomes added (EX46-HAC-

Mod1-P.R2.RaGOO_EX46CP-EX46MT). The resulting data set is referred to as HD SNP Set1. A 

summary of SNP discovery is provided in Table 4. The inter SNP distance provides an indication of 

the expected SNP density in any region with a summary bar plot of inter SNP distances shown in 

Figure 3. Inter SNP distances for E. globulus are very short with the majority of SNP being found 

within 100-2000 bp of each other.  This high SNP density and low expected linkage disequilibrium 

(LD) has significant implications for how well we would expect imputation to work. Native E.globulus 

has a high effective population size and our sampled individuals hopefully represent adequately the 

diversity of the species. Thus, our expectation is for linkage disequilibrium (non-random association 

between alleles at different loci) to be low. 

 

Table 4 Summary of SNP discovery for HD SNP Set1 based on GATK best practice variant discovery 
pipeline and whole genome sequence data from 963 discovery collection (E. globulus) samples with a 
mean sequence coverage of greater than six. 

Chromosome Biallelic SNP (MAF > 1%, 
MISS < 10%) 

Length (bp) 
SNP/kbp 

Chr1 538,669 42,805,116 13 

Chr2 676,961 54,643,196 12 

Chr3 748,284 68,413,973 11 

Chr4 480,014 41,230,448 12 

Chr5 736,052 63,447,923 12 

Chr6 628,416 54,369,819 12 

Chr7 600,141 55,219,908 11 

Chr8 907,963 73,639,819 12 

Chr9 480,284 39,381,439 12 

Chr10 518,270 42,238,892 12 

Chr11 553,622 47,166,220 12 

TOTAL 6,868,676 582,556,479 12 

 

This SNP set is the most comprehensive variant data set discovered to date for E. globulus. While it 

has been extensively filtered by imposing MAF and missingness thresholds, it is possible that variant 

positions with complex inheritance patterns (e.g. SNP variants in regions with underlying INDEL 

polymorphism) and some artefacts remain in the data set. Some of these will become apparent as 

they will prove difficult to impute or fail in Mendelian segregation tests. Despite this shortcoming, the 

SNP set represents a significant improvement on the approximately 800K SNP being used in previous 

studies/projects and is now the best available data set for this species that we know of. HD SNP Set 1 

was completed using fill in imputation pipeline using Beagle and Eagle. This fill in imputation should be 

applied routinely to high coverage WGS sequencing data generated on parents and key breeding 

individuals to continue to expand HD SNP Set1. This SNP set defines an industry standard SNP set. A 

principal component analysis (PCA) of the SNP genotypes is shown in Figure 4 and shows that the 

HD SNP Set1 captures the expected diversity of the breeding program. Provenance structure is 

particularly evident in the first-generation individuals (beige coloured points). There is a strong 

indication of four clusters, perhaps representing major evolutionary events such as the migration of 

individuals into the Otways, King Island and Western Tasmania, followed by migration to Southern and 

Eastern Tasmanian, then finally to the Furneax group.  
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Figure 3 Bar plot showing the distribution of inter SNP distances for variants discovered using GATK 
pipeline from 963 Eucalyptus globulus trees with greater than 6x average coverage. Inset bar plot shows 
breakdown of the 0-2000 bin for inter SNP distances between 0-100 + bp showing that the vast majority of 
inter SNP distances are between 100 and 2000 bp. Very few genome regions exist with inter SNP 
distances greater than 10,000 bp. 

 

 
Figure 4 PCA based on LD SNP Set1 showing coloration by generation. 
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Generating ENIT HD SNP Set 1 

The GATK best practice variant discovery pipeline was applied to the 339 E. nitens samples 

sequenced. A total of 32 million biallelic SNP were discovered after applying filtering with MAF > 1% 

and a missing call rate < 10%.  This high number of discovered SNP is partly due to the excellent 

average read depth that was obtained in the sequencing step. 

Table 5 Number of discovered SNP per chromosome using the 339 E. nitens samples 

Chromosome Biallelic SNP (MAF > 1%, MISS < 10%) 

Chr1 2,134,081 

Chr2 3,025,165 

Chr3 4,649,007 

Chr4 2,161,302 

Chr5 4,183,287 

Chr6 2,636,023 

Chr7 3,416,312 

Chr8 4,186,791 

Chr9 1,981,997 

Chr10 2,035,209 

Chr11 2,407,509 

TOTAL 32,816,683 

 

Generating EGLOB LD SNP Set 1 

A low-density (LD) SNP set was obtained by assaying a sample of the E. globulus breeding population 

with the Euc72K Chip. In this sense we are not discovering SNP de novo but assaying individuals with 

an existing, commercial SNP set, which resulted from SNP discovery work carried out by other 

research groups. 

The samples comprised parents not yet assayed and 3rd generation progeny mainly from Green 

Triangle trial sites. The number of samples in this collection was restricted to 1056, which amounts to 

11 plates of 96.  

The collection was augmented with 480 foliage samples (5 plates of 96) that had been previously 

collected in previous projects and assayed using high to medium coverage WGS.  

The consignment of samples was sent to Thermo Fisher for processing with the Euc72K Chip (68,055 

Eucalyptus and 4,147 Corymbia Features). A file was received back from Thermo Fisher indicating 

1508 samples had passed Dish Quality Control (DQC), sample quality control call rate (QC CR) and 

Plate quality control. A total of 50,865 markers were recommended as “Best and Recommended”.  

The raw data file was then filtered using BCFtools (Danecek, 2021) to a set of bi-allelic markers 

polymorphic at a minor allele frequency of 1% and with less than 10% missing data. As a result of this 

step the number of useable SNP was reduced to approximately 33,000. 
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Development of imputation pipelines 
Imputation is the process of replacing missing or error prone data with substituted values that are of 

higher accuracy. In genomics studies it generally refers to methods that infer unobserved SNP locus 

genotypes using a reference population which has no missing data, and on which accurate calls have 

been obtained. Imputation methodologies are broad in scope and cover: 

• to fill in the randomly missing SNP genotypes following the application of an assay 

• to infer non-assayed SNP genotypes for samples assayed for a subset of sites 

• to improve, through inference, genotypes at sites with some, but inadequate, information such 

as is obtained by low and middle coverage sequencing data 

The quality of imputed datasets is largely dependent on the software used, as well as the specifics of 

the reference populations chosen and the underlying patterns of variation in the population under 

study. 

In the tree breeding programs of TBA there are several points of application for imputation and this 

work seeks to specifically investigate and implement specific solutions to the major application points. 

The three major application points of imputation are: 

• a simple “filling-in” within a specific assay where one attempts to fill in the missing calls 

(Pipeline 1) 

• for imputation from Skim Whole Genome Sequencing (SWGS) data to a common high-density 

target set of SNP (Pipeline 2) 

• imputation from a low-density chip assay (e.g. the Euc72K chip) to a common high density 

target set of SNP (Pipeline 3) 

These three applications present different underlying problems and different pipelines will be required 

in application. 

While the goal is to develop imputation pipelines that can be applied across all breeding programs, 

species specific application of imputation in each breeding program will require the development of the 

appropriate background datasets and tests to validate efficacy for application. The current NIFPI 

project has allowed us to specifically focus on application in E. globulus using the genomic resources 

available for that breeding program, which at this time are the most extensive for any of the TBA 

breeding programs. From our discussions with Agriculture Victoria Research (AVR), it was decided 

that, for the foreseeable future, imputation pipelines are best handled using AVR computing 

resources. Transfer of these pipelines to TBA computing infrastructure at this stage would be 

inefficient and counterproductive. All outputs and scripts are available for TBA to use as project 

outputs. 

Pipeline 1 

Pipeline 1 is essentially for “filling-in” and phasing. With most assays not every marker will be 

successfully called across and within individual samples. Fill-in imputation attempts to recover the 

missing calls. Phasing occurs after fill-in imputation and determines which alleles were co-inherited on 

the same chromosome. The pipeline consists of scripts that apply the public domain software  

• Beagle (Beagle 5.1; Browning et al. 2018; Browning and Browning 2007), for the fill-in 

imputation step, and 

• Eagle (Eagle 2.4.1; Loh et al. 2016), for the phasing step. 

Pipeline 1 was used in the final stage of the process to derive EGLOB HD SNP Set 1 (see Figure 2) 

and in deriving EGLOB LD SNP Set 1 post filtering with BCFTools. 
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Pipeline 1 should be applied routinely to high coverage WGS data generated on parents and key 

breeding individuals to continue to expand EGLOB HD SNP Set1; and routinely to any low-density 

SNP chips, which invariably have small amounts of missing data. 

Pipeline 2 

Pipeline 2 is for the imputation of skim whole genome sequencing SWGS; (in this study defined as <6x 

coverage, but generally referring to <1x coverage data sets). Due to the low read depth associated 

with SWGS, there are few loci with enough reads to accurately call genotypes and the set of loci 

called generally differs from individual to individual. SWGS genotypes can be improved by imputing 

missing genotypes and improving genotype accuracy of loci with insufficient reads. A reference panel 

of phased high coverage (high accuracy) haplotypes are used to assist in the calling of sites that have 

not been, or inadequately, read.  

The pipeline consists of scripts that implement the software package GLIMPSE (Glimpse V1.1.0; 

Rubinacci et al. 2021), which was designed specifically for the imputation of low-coverage sequencing 

data sets. 

Pipeline 2 was used to derive EGLOB HD SNP Set 2 (genotype call data on > 6 million SNP for 4515 

samples). EGLOB HD SNP Set 1 was used as the reference panel. A diagrammatic summary of the 

process to create EGLOB HD SNP Set 2 is shown in Figure 5. 

 

 

Figure 5 Pipeline for creation of HD SNP Set2. 
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The process of application should be to first expand EGLOB HD SNP Set 1 to incorporate data from 

new, high coverage samples, such as parents. An aspect of TBA’s genomic selection strategy is to 

routinely assay new parents using medium to high coverage WGS and then to apply Pipeline 2 to 

impute any new low coverage WGS data. The GATK data bases for the high-coverage samples can 

be appended with new data for new samples and are therefore an extensible resource created as an 

output of this project. 

Pipeline 3 

Pipeline 3 is a more traditional application imputing low density chip assay genotype data to a high-

density target. The public domain software “Minimac” is the primary engine in this pipeline (Das et al, 

2016; Fuchsberger et al, 2015; Howie et al. 2012). The Minimac approach is to employ a reference 

panel of more densely typed individuals, such E. globulus parents assayed using high coverage WGS. 

The reference panel is then used to find haplotype segments that are shared among the target 

individuals which have been processed with the low density, commercial assay (for example, the 

Euc72K chip). Minimac operates on the premise of restricting the search for matching haplotypes to a 

small set of likely haplotype configurations, as determined by the reference panel. Minimac requires 

the target samples to be pre-phased. Minimac has undergone several revisions and the current 

version which we are using is Minimac3. 

Imputation testing 
Pipeline 3 will underpin our effort to construct genomic relationship matrices using DNA assay data 

from different marker panels. It was important for us to determine how well we could impute up to a 

high-density marker set, given the genomic resources currently available to us, in terms of reference 

and target sets. Therefore, we implemented several investigations of the Minimac approach used in 

Pipeline 3.  The approach entailed applying a sub-sampling method to simulate target samples, and 

target SNP sets, of various sizes, and then impute back testing various reference data set sizes. We 

sub-sampled both chip and WGS derived data.  

An overview of the imputation testing is given in Figure 6. 
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Figure 6 Overview of imputation tests run to investigate imputation options. Tests 01 used the EUchip72K 
data set to develop the pipeline steps, whereas steps 02 and 03 investigate the potential imputation 
accuracies that are likely given various SNP subsets. 

 

For all imputation tests the accuracy of imputation was calculated as the Pearson correlation and 

concordance of imputed genotypes from each respective iteration and raw genotypes from the 

relevant sub-sampled data set. Concordance was calculated as the proportion of imputed genotypes 

matching full data set genotypes. 

 

 

Figure 7 Imputation and testing. 

 

The imputation and correlation procedure is schematically given in Figure 7, whereby a Test VCF File 

containing M samples and N SNPs, was reduced to 5 Test X% of SNP VCF files, which contained all 

samples, but with SNP panels reduced to just 1%, 5%, 10% and 20% of the original number of SNPs 

respectively. These panels were then imputed back up to their original number of SNPs, using 

Pipeline 3, to produce an Imputed Test CVF File. Then a sample wise Pearson’s correlation and 

concordance between the Imputed Test CVF File and Test VCF File was recorded. 
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Imputation Tests 1 

The first set of imputation tests (Imputation Tests 01) use EGLOB LD SNP Set 1 as the data set and 

were primarily aimed at testing Pipeline 3 using Minimac3, rather than testing the efficiency of 

imputation per se.  The data set (EGLOB LD SNP Set 1) is not fully representative of the breeding 

program diversity, with the bulk of samples derived from a small number of generation 3 families.  

Results of the imputation, by chromosome, are shown in Figure 8, with imputation accuracies above 

0.9 per sample seen with even the lowest sub-sample of 5% (only a hundred or so markers).  The 

limited diversity in the data probably accounts for the high accuracy seen in these results and is 

unlikely to be reflective of what will be possible in the HD sets. Larger population samples are used in 

generating HD sets and faster LD breakdown is likely to be observed which will impact imputation 

accuracy.  In addition, the reference panels for use in Pipeline 3 with HD sets have lower, overall 

genotype accuracies, due to their creation from WGS rather than from chip assays. 

 

 

Figure 8 Imputation Tests 01 - results for each chromosome showing the squared correlation (R2) 
between imputed and reference genotypes based on sub-sampling different SNP panels (5%, 10% and 
20%) for the 11 chromosomes. 
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Imputation Tests 2 

The second set of imputation tests (Imputation Tests 02) use EGLOB HD SNP Set1 as the data set 

and were primarily aimed at investigating Pipeline 3 imputation across a high-density SNP set based 

on WGS rather than chip data.  The data set (EGLOB HD SNP Set 1) is more representative of the 

breeding program diversity with samples more evenly derived from across generations.  There is 

structure in the data reflecting the population history of the breeding program and the trees are far less 

related overall than was seen in EGLOB LD SNP Set 1.  Results of the imputation, by chromosome, 

are shown in Figure 9, with imputation accuracies increasing from a very low level for small SNP sub-

selections used in training to a maximum of ~0.6 per sample with the largest sub-sample of 20%.  This 

lower accuracy is more likely reflective of the current state of imputation accuracy achievable in the 

HD sets with the rapid LD breakdown meaning that very large marker numbers are required to impute 

genome wide to high accuracy. The lower overall genotype accuracies and the smaller number of 

individuals in the reference set are also likely factors coming into play in this data set.  It is likely there 

are sub-sets of markers that are readily imputable consistently within this set and a research task will 

be to investigate to find and characterise these sets. 

 

 

Figure 9 Imputation Tests 02 - results for each chromosome showing the squared correlation (R2) 
between imputed and reference genotypes based on sub-sampling different SNP panels (1, 5%, 10% and 
20%) for the 11 chromosomes. 
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Imputation Tests 3 

The third set of imputation tests (Imputation Tests 03) use EGLOB HD SNP Set 2 as the data set and 

were primarily aimed at investigating the addition of samples from low coverage WGS to create a 

larger training set, and its impact on the final achieved imputation accuracies. The data set (EGLOB 

HD SNP Set 2) is very representative of the breeding program diversity with samples evenly derived 

from across generations and including most parents that have been used in the program linking the 

germplasm pools within and across generations.  As for EGLOB HD SNP Set 1, there is structure in 

the data reflecting the population history of the breeding program and the trees are less related overall 

than was seen in EGLOB LD SNP Set1.  Results of the imputation for Chromosome 1 are shown in 

Figure 10, with imputation accuracies increasing by around 20% with the larger training set.  This 

accuracy improvement reflects the importance of training set size and indicates that increasing the 

remaining set to between 10 and 20 thousand trees will make reasonably high imputation accuracy 

achievable in the HD sets. This larger training set requirement is reflective of what is observed in 

human data sets and is a point of departure from what is observed in domestic animal and plant 

species where relatively small training sets are required to drive high imputation accuracy to the whole 

genome level. This result indicates that continued genotyping using a WGS approach would be a valid 

strategy in the eucalypts as it will serve to develop a training set of a more appropriate scale to drive 

imputation within the breeding program as well as improve the overall genotype accuracy within 

samples as each allele will be sampled increasingly frequently across the program.  Low pass WGS in 

the blue gum program is currently very cost competitive compared to available chip platforms and 

returns a significantly higher information content and data value compared to genotyping with low 

density assays.  This makes the data re-useable and accumulative to drive future advances in 

outcomes from imputation. While there is a trade-off between within individual marker (SNP) genotype 

accuracy and SNP number it seems that this trade-off decreases as the number of samples assayed 

with low coverage WGS increases.  This is because information shared between related trees can be 

used to improve the underlying site by site genotype accuracies as shown with the development of 

EGLOB HD SNP Set2 using the Pipeline 2 (GLIMPSE) imputation procedure. As it is an active area of 

research it is also probable that methods for low pass WGS will continue to improve over the coming 

years. 

 

(a) (b) 

 
 

Figure 10 Imputation Tests 03 - sample size effect: (a) results for Chromosome 1, showing the squared 
correlation (R2) between imputed and reference genotypes based on sub-sampling different SNP panels 
(1, 5%, 10% and 20%). Left plot (SS 96), had 96 test samples and 864 reference samples, the right plot (SS 
451) 451 test and 4059 reference samples (approx. 4.7X more samples). (b) Show means and standard 
deviations for data given in (a). 
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Investigation of the intersection of low- and high-density SNP sets 
Intersection 1 (matching SNP in common to Euc72K chip and AgVic sequence assembly) 

The ability to use data sets from different platforms relies upon the ability to match markers, in terms 

of their genomic referencing, that are featured on each of the platforms. This is best achieved through 

use of a common reference genome sequence. The E. grandis reference sequence was the basis of 

the referencing of SNP on the Euc72K chip.  Thus, it made sense to base the referencing of SNP 

discovered de novo in our sequencing work on this same reference sequence.  

The first step was to match the EuChip72K SNP probes to the EX46-HAC-Mod1-

P.R2.RaGOO_EX46CP-EX46MT genome assembly (or RaGOO assembly for short) using the DNA 

sequence alignment tool NUCLEAR (GYDLE, https://gydle.com/innovations).  This genome assembly 

used the E. grandis reference genome sequence for chaining scaffolds into super-scaffolds. The 

alignment reports back all matches across the entire genome for each flanking sequence unique to 

each SNP. The list of alignments was then filtered for single alignments and for alignments with 100 

coverage of the flanking sequence (allowing mismatches). These alignment results are summarised in 

Table 6. Of the 68,055 probes on the chip only 41,321 could be unambiguously mapped to the 

RaGOO assembly.  More flanking sequences did map but these were filtered out due to incomplete 

mappings or due to multiple mapping locations across the genome. Of the 68,055 probes 33,019 

returned polymorphic signal across a panel of approximately 1500 trees sampled from the breeding 

program. When combined there are only 20,053 SNP that map to the RaGOO assembly and have a 

polymorphic signal. 

 

Table 6 Summary of Euc72K Chip flanking sequence alignments against the Eucalyptus globulus 
reference genome assembly EX46-HAC-Mod1-P.R2.RaGOO_EX46CP-EX46MT. 

SNP Group Number 

On Euc72K chip 68,055 

Polymorphic in TBA breeding population 33,019 

Mapped to reference genome 41,321 

Polymorphic and mapped 20,053 

 

Intersection 2 (matching SNP in common to Euc72K chip and EGLOB HD SNP set 1) 

The second level of intersection is finding those SNP on the Euc72K Chip that are successfully 

matched to the RaGOO assembly, and which are also identified in the set of SNP discovered overall, 

and then of these, are included in EGLOB HD SNP Set 1.  

There were 6.87 million bi-allelic SNP (MAF >1%, Maximum Missing <10%) discovered across the E. 

globulus genome using the set of 963 accessions with an average coverage of greater than 6 (see 

Table 4).  The encodings used on the Euc72K Chip SNP vary in most cases with the encodings on 

these de novo discovered SNP. A minority of 29.2% of SNP have the exact encoding, while 69.3% of 

the SNP have an opposing, or opposite and opposing strand encoding of the REF and ALT bases (i.e. 

the REF base in one set is the ALT base in the other AND/OR it is called on the opposing strand). 

Opposite and opposing strand encoding are common issues when comparing SNP genotyping 

platforms and generally reflects the different reference genomes used. For joint usage these opposing 

and opposite strand encodings need to be unified. For a very small number of SNP (1.5%) the ALT or 

REF bases do not agree between the two sets regardless of strand or REF/ALT encoding pattern and 

these represent cases where there is likely an error in one set or the other. These positions should be 

excluded from analysis. 
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The EGLOB HD SNP Set 1 is a subset of these overall variants and has a total of 6.8 million SNP that 

are bi-allelic and with a minor allele frequency of greater than 1%.  As the EGLOB HD SNP Set 1 is a 

filtered set many true SNPs will have been left out of this set, either because they are found in 

genomic regions where there is also small INDEL variation or because the frequency is below 1% in 

our discovery population (and therefore in the breeding program).  Small INDEL variation is common 

across the E. globulus genome between accessions and many SNP are of very low MAF. Surprisingly 

the final intersection of mapped Euc72K SNP and de novo discovered SNP in the EGLOB HD SNP 

Set1 reduces to 2,732 SNP positions after all filtering and matching. This is a very small subset and 

presents a significant challenge to cross platform data integration via this route, without imputation 

fully established as a routine operation. 

Intersection 3 (matching SNP in common to Euc72K chip and SNP discovered using a pre-

RaGOO assembly) 

To combine assay results from multiple genotyping assays we instead called WGS SNP against the 

Eucalyptus grandis genome assembly Version 2.0 (https://phytozome-

next.jgi.doe.gov/info/Egrandis_v2_0).  This strategy aimed to limit the loss of SNP due to 

strandedness and REF/ALT allele state as both the WGS SNP and the Euc72K would be referencing 

the same genome assembly. The downside would be the increased genetic distance between the 

reference genome sequence and the WGS data which can increase the rate of missing data due to 

dropout from divergent sequences which do not map. Alignments of samples with a coverage >4 were 

used for a de novo SNP discovery and then the GLIMPSE imputation pipeline was used to genotype 

remaining samples with coverage <4, essentially following the same procedures as described above. 

Table 7 summarises the intersection process.  The Euc72K manifest included 67,683 SNP loci of 

which 33,660 remained after processing the 1508 individuals directly assayed with the chip (see 

section on EGLOB LD SNP Set1). The processing of individuals identified SNP with low MAF and/or 

high missingness. Of these 33,660 SNP, 18,582 were identified in the de novo SNP discovery 

process. That is, they were shown to be biallelic, and matched the exact REF/ALT state and 

strandedness as reported in the Euc72K manifest. In the final intersection set there were 17,103 SNP 

loci that could be used in a joint chip and WGS analysis where exact matching between the SNP in 

the WGS genotypes and the reported Euc72K genotypes was maintained.   

Table 7 Numbers of SNP after each filtering step.  

Chromo-
some 

72K SNP 
Manifest 

72K – Filtered (MAF 
1%, Miss30 %) 

Orzenil vs EGRA de 
novo manifest allele 

match 

Final Data Allele 
Match 

1 6764 3222 1652 1379 

2 8943 4348 2467 2191 

3 7948 3765 2357 2137 

4 3911 2096 968 940 

5 7183 3088 2067 1860 

6 6927 3595 1990 1769 

7 6572 3155 1695 1630 

8 6572 3367 1940 1822 

9 4243 2395 1122 1120 

10 4457 2444 1180 1157 

11 4163 2185 1144 1098 

TOTAL 67683 33660 18582 17103 

 

  

https://phytozome-next.jgi.doe.gov/info/Egrandis_v2_0
https://phytozome-next.jgi.doe.gov/info/Egrandis_v2_0
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Operational demonstration of genomic selection in E. globulus  
Construction of a consolidated GRM 

AVR supplied a dosage file consisting of genotype calls made on 7,296 individuals for 17,103 SNP. 

Dosages are real numbers ranging between 0 and 2 (3 is used for a missing call). The closer the 

number is to an integer (0, 1 or 2), the more accurate is the call. A value of 0.5 for example is 

indicative the call is equally likely to be a 0 or a 1. The 7,296 individuals included approximately 2,000 

juvenile progeny that have been more recently assayed using low pass WGS, in addition to all 

individuals assayed to date using either high and low pass WGS and the Euc72K chip. 

The genomic relationship coefficients in an initial build were compared to relationship coefficients 

derived using only pedigree. This comparison provides an initial check on the integrity of the GRM. 

 

 
Figure 11 Frequency distributions of GRM intra-genotype coefficients, by type (CP=individual is result of 
cross pollination, OP=individual is result of open pollination, Self=individual is a selfed tree). 

 

 
Figure 12 Frequency distributions of GRM inter-genotype coefficients, by relationship determined from 
the pedigree. 

Figure 11 plots the frequency distribution of the diagonal elements of the GRM (intra-genotype 

coefficients) for different classes of individual according to mating type (result of cross-, open-, or self-

pollination).  Figure 12 plots the frequency distribution of the off-diagonal elements of the GRM (inter-

genotype coefficients) for different classes of individual according to relational type (full-sibs, half-sibs, 
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etc). It appears the GRM coefficients are generally underestimated. The mode of the GRM coefficients 

between recognised half-sibs is below the theoretical, expected value of 0.25, while that for 

recognised full-sibs is below the theoretical, expected value of 0.5. Diagonal GRM elements for non-

inbred trees are generally lower than the expected value of 1.  

 

  

Figure 13  X-Y plots of intra- and inter-genotype GRM coefficients against NRM coefficients. 

 

Figure 13 shows X-Y plots of GRM coefficients against NRM coefficients at the intra-and inter-

genotype levels. The slopes of the plotted trend lines have values less than 1 indicating the GRM 

coefficients are generally lower than the corresponding NRM coefficients. 

A heat map of the coefficients of the 1,235 assayed individuals that belong to either generation 0 or 

generation 1 and are not the result of inter-subrace crossing is displayed in Figure 14. A clustering 

algorithm was applied to the coefficients prior to generating the heatmap. It would appear there are 

between 5 and 6 main clusters, supporting the results from the principal components analysis (see 

Figure 4). A small cluster aligns with individuals representing the Wilson’s Promontory provenance, 

which was not evident in the PCA plot. 
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Figure 14 Heat map of the GRM coefficients for 1235 trees representative of a base population. 

 

Several hypotheses were put forward for causing the observed underestimation of GRM coefficients: 

1. SNP allele frequencies, which are used to centre and scale the genomic relationships, are not 

fully reflective of the “true” base population allele frequencies because currently they are 

computed using genotype call data on all assayed trees 

2. Population structure is not accounted for in the computation of the GRM 

3. Ascertainment bias exists in the sense that the allele frequencies for chosen SNP are not fully 

reflective of the true spectra of allele frequencies in the genome. 

We tested hypothesis 1 by computing allele frequencies using only 1,235 generation 1 individuals 

(which are offspring of randomly selected native mothers). We tested hypothesis 2 by incorporating a 

vector of cluster membership into the van Raden methodology for computing GRM coefficients. The 

revised methodology uses the allele frequencies specific to each cluster. Hypothesis 3 was tested by 

deliberately fixing the value of the scaling factor. The value for the scaling factor is the average 

heterozygosity in the population (2 ∑ 𝑝𝑖(1 − 𝑝𝑖)), which was estimated as 0.28. Ascertainment bias 

may have prevented the inclusion of SNP with very low MAF, which if included, may lead to lower 

average heterozygosities. We fixed the value for the scaling factor at values less than that observed. 

The strategies for testing hypotheses 1 and 2 did not significantly help in making GRM coefficients 

align better to the NRM coefficients. The strategy for testing hypothesis 3 did lead to a better 

alignment.  
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Figure 15 Frequency distributions of intra- (top row) and inter-genotype (bottom row) genomic relationship coefficients, when deliberately fixing average 
heterozygosity ( 2 ∑ 𝑝𝑖(1 − 𝑝𝑖) ) at values less than that observed. The species in this case E. globulus. 

 

Fixing 2 ∑ 𝑝𝑖(1 − 𝑝𝑖) = 0.22 Fixing 2 ∑ 𝑝𝑖(1 − 𝑝𝑖) = 0.24 Fixing 2 ∑ 𝑝𝑖(1 − 𝑝𝑖) = 0.26 
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Single-step analysis in E. globulus with a consolidated GRM 

Single step analyses in E. globulus that have been run between years 2018 and 2020 have used a G 

matrix constructed with approximately 800,000 SNP. These SNP sets were defined in previous 

projects such as PNC408-1516 ‘Single-Step TREEPLAN Incorporating genomic data in TREEPLAN 

evaluations to increase genetic gain’, using genome assemblies which have since been superseded. 

At the time of publishing the final report for PNC408-1516, we had assayed approximately 4,300 

individuals, of which approximately 2,900 were included in the final G matrix.  Many had been 

excluded because of poor co-call rates. Low co-call rates were an impediment to reliable G matrix 

construction, and this was the impetus to develop imputation methods to improve genotype reliability 

from low coverage WGS data sets. Prior to this project we were not using imputation to fill-in missing 

calls and relying on the KGD method (Dodds et al. 2015) for G matrix construction.  

For the 2021 single-step analysis in E. globulus we constructed a G matrix based on the intersection 

of SNP between the EGLOB LD and HD SNP Sets referenced to the Eucalyptus grandis genome 

assembly.  A SNP dosage file was generated that contained allele dosages for 7,296 samples, across 

17,103 SNP. This increased number of samples (7,296) reflects the inclusion of WGS samples that 

had been previously excluded due to poor genotype call rates, the additional samples for which WGS 

has been completed in this project, the 1,508 (1,056 new) samples assayed with the Euc72K chip and 

the 2,000 juvenile progeny recently assayed using low-coverage WGS. At the time of the 2021 

analysis the system contained 722,685 observations for 18 selection criteria (SC), measured on stems 

at 341,824 positions across 174 trials. There were 347,573 genotypes and 7,168 families in the 

pedigree. The selection criteria are correlated to varying degrees to 7 breeding objective traits (BOT). 

Multiple $NPV Indices have been defined by the economic weighting of BOT. For the 2021 analysis a 

new G matrix was constructed using standard “van Raden” methodology. It was aligned to the A 

matrix using the methodology suggested by Legarra et al. (2014) and then weighted with the A matrix 

using a lambda (𝜆) of 0.2.  

Data, pedigree, the new G-matrix and parameters were extracted from DATAPLAN for the 

TREEPLAN system ‘EGlob_May2021' (SystemID=1000). The prediction error variances (PEV) of the 

genetic effects in the TREEPLAN single-step model were computed using a trial version of the Linear 

Mixed Models Toolbox (LMT) software supplied by Dr Vinzent Boerner. This software has more 

advanced algorithms for PEV computation than software currently used by TBA (SSSADI). Accuracies 
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(𝑟𝑢𝑢)  of EBV for selection criteria, breeding objective traits and NPV $Indices were computed as a 

function of the PEV and either the diagonals of the H-matrix, or the A matrix, for the values 1 + F in the 

following equation: 

 

𝑟𝑢𝑢 =  √1 −  
𝑃𝐸𝑉

(1+𝐹)𝜎𝑎
2 .  

 

X-Y plots showing the selection criteria trait (SCT) accuracies with and without the G matrix are shown 

in Figure 16 for assayed trees and in Figure 17 for non-assayed trees. Plots showing the breeding 

objective trait (BOT) accuracies, for both assayed and non-assayed trees are shown in Figure 18. 

Points have been coloured to denote trees in different generation by parent status categories (e.g. 

“Gen-0.parent” and “Gen-0.non-parent” denote parents and non-parents in generation 0, respectively). 

Table 8 shows the distribution of individuals among the various categories. Gen-2 non-parents have 

been assayed the most, and there are very few Gen-0 individuals assayed. Table 9 contains the mean 

EBV accuracies and percentage change in the mean (%), when using the H or A matrices for the 

BOT: VOL_GTR, Density and Kraft Pulp Yield. Results for the other regional based volume BOT (e.g 

VOL_TAS, VOL_WA etc) are like VOL_GTR and not shown. 

Non-parents have lower accuracy than parents, and individuals in earlier generations have lower 

accuracy than individuals in later generations. The X-Y plots and tables show that the individuals that 

benefit most from a DNA assay are the earlier generation non-parents. The improvement in accuracy 

is largest for the few Gen-0 non-parents, particularly for a SCT such as Predicted Pulp Yield (PPY) 

which has a lower incidence of measurement. Accuracies of BOT reflect the accuracies of the SCT 

that are more highly correlated to them (accuracy of EBV for Kraft Pulp Yield is mostly a reflection of 

the accuracy for PPY). Hence, we see a 35% improvement in accuracy for Gen-0 non-parents for 

Kraft Pulp Yield (see Table 9). 

 

Table 8 Distribution of assayed individuals that comprise the 2021 GRM, by generation and parent-status 
(in E. globulus). 

 Parent Non-parent Total 

Gen-0 7 11 18 

Gen-1 349 871 1220 

Gen-2 97 3067 3164 

Gen-3 0 746 746 

   5148 
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Figure 16 Accuracies of EBV for assayed trees, for selection criteria traits (SCT) computed with and 
without the 2021 genomic relationship matrix (GRM) in E. globulus. 

 

In Figure 16 we generally are seeing large bands of increased accuracy for Gen-1 non-parents 

(bisque colour), and for those Gen-2 and Gen-3 non-parents (dark blue and brown colours) that 

initially have low accuracy. There is less tendency to observe a marked improvement in accuracy for 

parents as these generally have high prior accuracy. However most Gen-1 parents (yellow colour) do 

have increased accuracy when the GRM is used, possibly due to recovery, or discrimination, of 

previously unknown paternal relationships. 
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Figure 17 Accuracies of EBV for non-assayed trees, for selection criteria traits (SCT) computed with and 
without the 2021 genomic relationship matrix (GRM) in E. globulus. 

 

In Figure 17 (accuracies associated with non-assayed trees) we observe distinct increases in 

accuracy across all SCT for Gen-0 parents (mauve colour) and Gen-1 non-parents (bisque colour), 

and distinct increases for Gen-1 parents for some SCT such as basic density (BD), PILO and PPY. 
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Figure 18 Accuracies of EBV for breeding objective traits (BOT) computed with and without the 2021 
genomic relationship matrix (GRM) in E. globulus. The left plot shows accuracies for assayed trees and 
the right plot shows accuracies for non-assayed trees. 

 

Figure 18 shows that the changes in accuracy for BOT mirror those observed for SCT (Figure 17). The 

tables below (Table 9) show that on average, there is a small average decrease in accuracy for later 

generational categories, such as Gen-2 parents and Gen-2 non-parents and Gen-3 non-parents, when 

the H matrix is used. This decrease may reflect the impact of the realised relationships being reflected 

rather than the average expected relationships. It may also reflect accumulation of pedigree errors. It 

is in these categories of trees that we desire an increased accuracy from assaying because it is from 

these categories that new selections are made. In E. nitens (results to follow) we do not observe this 

happening and in fact the largest increases in accuracy are observed for these categories of trees. In 

E. nitens there is a much larger population of assayed trees and having an insufficient cohort of trees 

assayed may be a reason we observe the opposite trend in E. globulus. What is clear is that the 

largest changes (increases) in accuracy are observed in the trees with the lowest initial accuracy 

whilst trees with higher initial accuracies seem to have the same or decreased accuracy. 
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Table 9 Mean EBV accuracies for VOL_GTR, Density and Kraft Pulp Yield and percentage change in the 
mean (%), when using the H (based on the 2021 GRM) and A matrices in the mixed model equations (in E. 
globulus). 

 Assayed Non-Assayed 

VOL_GTR 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.85 0.82 3.51 0.64 0.54 18.00 0.71 0.70 0.82 0.63 0.62 0.15 

Gen-1 0.83 0.81 2.48 0.70 0.65 7.98 0.70 0.70 -0.36 0.68 0.68 -0.29 

Gen-2 0.77 0.81 -4.84 0.74 0.78 -4.82 0.79 0.80 -1.30 0.78 0.77 1.01 

Gen-3    0.68 0.70 -2.26    0.76 0.76 0.61 

Density 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.89 0.85 4.80 0.67 0.53 25.57 0.74 0.74 0.91 0.67 0.67 0.02 

Gen-1 0.90 0.88 2.45 0.75 0.69 9.85 0.68 0.69 -0.33 0.69 0.70 -0.44 

Gen-2 0.88 0.89 -1.01 0.82 0.83 -0.62 0.84 0.85 -0.61 0.81 0.80 0.83 

Gen-3    0.74 0.75 -0.54    0.82 0.81 1.12 

Kraft Pulp Yield 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.73 0.66 10.71 0.55 0.41 34.67 0.54 0.52 1.98 0.45 0.45 0.49 

Gen-1 0.74 0.70 5.57 0.61 0.53 15.49 0.54 0.54 0.13 0.51 0.51 -0.04 

Gen-2 0.69 0.75 -7.59 0.70 0.73 -3.47 0.67 0.69 -1.78 0.68 0.68 1.32 

Gen-3    0.61 0.62 -2.21    0.66 0.66 -0.06 

 

Figure 19 indicates that use of a GRM can result in substantial increases in the accuracy of a NPV 

$Index EBV. The infrastructure in place in DATAPLAN to convert selection criteria trait EBV to BOT 

EBV and then finally to EBV for NPV $Indices provides a practical means for operational breeders to 

incorporate genomics into breeding decisions. Mean increases in accuracy for the specific 

generational class by parent status categories are provided in Table 10. 

 

 
Figure 19 Accuracies of EBV for a NPV $Index (titled ‘Index’) computed with and without the 2021 
genomic relationship matrix (GRM) in E. globulus. The left plot shows accuracies for assayed trees and 
the right plot shows accuracies for non-assayed trees. 
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Table 10 Mean EBV accuracies for NPV Index called ‘Index’, and percentage change in the mean (%), 
when using the H (based on the 2021 GRM) and A matrices in the mixed model equations (in E. globulus). 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.81 0.74 8.86 0.53 0.36 48.82 0.60 0.59 1.61 0.50 0.50 0.13 

Gen-1 0.81 0.78 3.44 0.63 0.55 15.32 0.57 0.57 -0.53 0.56 0.56 -0.63 

Gen-2 0.76 0.80 -5.58 0.69 0.73 -6.02 0.74 0.76 -1.80 0.72 0.71 1.32 

Gen-3    0.61 0.63 -4.03    0.72 0.71 1.40 

 

Run 2021 TREEPLAN E. globulus data with 2020 version of GRM. 

To investigate the implications of using a GRM constructed with more individuals but using a smaller 

SNP set derived from both chip and WGS assay methods, we extracted the 2020 version of the GRM 

from DATAPLAN to use with the same TREEPLAN system ‘EGlob_May2021'. The 2020 GRM 

contained coefficients among 2,882 individuals and was based on genotype calls for 856,011 SNP. 

There was a high proportion of missing genotype calls (37%) and no imputation was used. PEV and 

accuracies were again computed using the LMT software. 

Figure 20 shows the X-Y plots of accuracies computed with and without the 2020 GRM, for assayed 

and non-assayed trees. They generally show that the increases in accuracy for those categories of 

trees, which were shown previously to have higher accuracy with the 2021 GRM, are substantially less 

relative to the 2021 scenario. For example, there is a 4.1% increase in accuracy for Gen-1 non-

parents for the BOT Kraft Pulp Yield when using the H matrix based on the 2020 GRM (see Table 11). 

The corresponding increase when the H matrix is based on the 2021 GRM is 15.5% (see Table 9). 

Similar patterns occur for the other BOT and for the $NPV Indices. 

 

 

Figure 20 Accuracies of EBV for breeding objective traits (BOT) computed with and without the 2020 
genomic relationship matrix (GRM) in E. globulus. The left plot shows accuracies for assayed trees and 
the right plot shows accuracies for non-assayed trees. 
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Table 11 Mean EBV accuracies for VOL_GTR, Density and Kraft Pulp Yield and percentage change in the 
mean (%), when using the H (based on the 2020 GRM) and A matrices in the mixed model equations (in E. 
globulus). 

VOL_GTR 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.83 0.82 1.56 0.58 0.55 5.73 0.71 0.70 0.15 0.62 0.63 -0.11 

Gen-1 0.81 0.81 0.26 0.66 0.65 2.38 0.70 0.70 -0.09 0.68 0.68 -0.14 

Gen-2 0.79 0.82 -3.07 0.78 0.80 -2.61 0.80 0.80 -0.03 0.77 0.77 0.01 

Gen-3    0.76 0.78 -1.57    0.75 0.75 -0.11 

Density 

 Assayed Non-Assayed 

 Parent Non-parent Parent  Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.86 0.84 2.26 0.59 0.54 8.27 0.74 0.74 0.24 0.67 0.67 -0.01 

Gen-1 0.88 0.88 0.35 0.71 0.69 2.90 0.69 0.69 0.03 0.70 0.70 -0.11 

Gen-2 0.88 0.90 -1.55 0.84 0.85 -0.75 0.85 0.85 0.18 0.80 0.80 0.10 

Gen-3    0.83 0.84 -0.46    0.81 0.81 0.16 

Kraft Pulp Yield 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.70 0.67 4.16 0.46 0.42 9.54 0.53 0.53 0.16 0.45 0.45 -0.52 

Gen-1 0.71 0.70 0.76 0.56 0.53 4.10 0.54 0.54 -0.21 0.51 0.51 -0.33 

Gen-2 0.72 0.75 -4.72 0.73 0.75 -2.52 0.67 0.67 0.19 0.67 0.67 -0.12 

Gen-3    0.70 0.71 -1.51    0.65 0.65 -0.46 

 

 

 

Figure 21 Accuracies of EBV for ‘Index’ computed with and without the 2020 genomic relationship matrix 
(GRM). The left plot shows accuracies for assayed trees and the right plot shows accuracies for non-
assayed trees. 
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Table 12 Mean EBV accuracies for NPV Index called ‘Index’, and percentage change in the mean (%), 
when using the H (based on the 2020 GRM) and A matrices in the mixed model equations (in E. globulus). 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.78 0.74 4.40 0.43 0.37 15.36 0.59 0.59 0.37 0.49 0.50 -0.11 

Gen-1 0.79 0.78 0.54 0.58 0.55 4.90 0.57 0.57 -0.02 0.56 0.56 -0.22 

Gen-2 0.78 0.81 -3.64 0.73 0.76 -3.27 0.75 0.75 0.19 0.71 0.71 0.11 

Gen-3    0.72 0.73 -1.98    0.70 0.70 0.04 

In Table 12 there is a 4.9% increase in accuracy for Gen-1 non-parents for the NPV Index called 

‘Index’ when using the H matrix based on the 2020 GRM. The corresponding increase when the H 

matrix is based on the 2021 GRM is 15.5% (see Table 10). 

There are many contributing factors to the better performance of the 2021 GRM. They include the 

following 

• Improved reference genome assembly. Prior to 2021 we based SNP discovery on an 

assembly consisting of many thousands of contigs, but in 2021 we had a chromosome level 

assembly 

• Improved SNP discovery pipeline based on GATK 

• Imputation is now used to fill in a large proportion of missing genotype calls for those 

individuals assayed using whole genome sequencing 

• Approximately 1000 individuals with highly accurate genotype calls made using the Euc72K 

chip were added to the data set 

Though the 2021 GRM was based on a much smaller SNP set, the value of another 1000 assayed 

individuals, and having all missing genotype calls filled in using imputation appears to outweigh the 

negatives of a smaller SNP set. Efforts to continue increasing the number of assayed individuals 

should remain a high priority as the current set is still only about half to a third the scale required to 

achieve high cross-generation imputation accuracy.   

Single-step analysis in E. nitens  
In June 2021 a G matrix constructed for 12,386 individuals and from an unknown number of SNP was 

received from Gondwana Genomics. This G matrix was imported into DATAPLAN and flagged for use 

with the current national E. nitens TREEPLAN analysis system. This system contains 697,868 

observations for 54 selection criteria (SC), measured on stems at 199,438 positions. There are 

210,409 genotypes and 3,879 families in the pedigree. The selection criteria are correlated to varying 

degrees to 30 breeding objective traits (BOT). Multiple $NPV Indices have been defined by the 

economic weighting of BOT. Table 13 shows the distribution of assayed individuals among the various 

categories. Gen-3 non-parents have been assayed the most. As for E. globulus very few Gen-0 

individuals have been assayed (only 1 in this case). The distinguishing feature of E. nitens is that most 

of the assayed trees (Gen-2 and Gen-3 non-parents) do not have observations, and the size of the 

training set (individuals with observations and have been assayed) is much smaller than in E. 

globulus. 

Data, pedigree, the 2021 G-matrix and parameters were extracted from DATAPLAN for the 

TREEPLAN system ‘202005_GRM_2021’ (SystemID=1003). The prediction error variances (PEV) of 

the genetic effects in the TREEPLAN single-step model were computed using a trial version of the 

Linear Mixed Models Toolbox (LMT) software. Accuracies were then derived from the PEV and the 

relevant diagonal elements of either the H or A matrices. 
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Table 13 Distribution of assayed individuals that comprise the 2021 GRM, by generation and parent-status 
(in E. nitens). 

 Parent Non-parent Total 

Gen-0 1 0 1 

Gen-1 211 390 601 

Gen-2 352 3807 4,159 

Gen-3 0 7625 7,625 

Total 564 11,822 12,386 

 

 
Figure 22 Accuracies of EBV for assayed trees, for selection criteria traits (SCT) computed with and 
without the 2021 genomic relationship matrix (GRM) in E. nitens. 

In Figure 22 we see that there is a widespread improvement in accuracy for most of the assayed 

trees, which are dominated by the Gen-3 non-parent category (red colour). Examining the actual shift 

in the mean accuracies for selected selection criteria traits (SCT) we see the percent improvements 

are substantial (see Table 14). They range between 11 and 38 % improvement for non-parents and 

between 2 and 14 % for parents. 
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Table 14 Mean EBV accuracies for selected SCT, and percentage change in the mean (%), when using the 
H and A matrices in the mixed model equations (in E. nitens). 

Pilodyn_08_15 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.66 0.62 5.86    0.60 0.60 0.20 0.32 0.32 0.31 

Gen-1 0.69 0.66 3.58 0.61 0.54 13.75 0.54 0.54 -0.04 0.51 0.51 -0.15 

Gen-2 0.66 0.63 3.72 0.60 0.54 11.42 0.52 0.51 0.55 0.51 0.51 0.41 

Gen-3    0.57 0.47 20.42    0.42 0.42 0.07 

KPY_core_08_15 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.78 0.75 5.08    0.54 0.54 1.45 0.31 0.31 2.11 

Gen-1 0.74 0.65 13.78 0.66 0.51 30.96 0.50 0.49 2.11 0.47 0.47 1.12 

Gen-2 0.71 0.62 13.94 0.70 0.58 19.68 0.55 0.53 2.78 0.53 0.52 2.57 

Gen-3    0.64 0.46 37.93    0.42 0.42 0.18 

DBH_Cold_08_15 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.85 0.83 2.72    0.64 0.64 0.27 0.38 0.38 0.67 

Gen-1 0.81 0.76 5.75 0.67 0.56 19.82 0.56 0.56 -0.18 0.54 0.55 -0.09 

Gen-2 0.72 0.67 7.51 0.69 0.61 12.52 0.62 0.62 -0.25 0.61 0.61 -0.34 

Gen-3    0.63 0.49 28.96    0.44 0.44 -0.60 

Cellulose_Core_08_15 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.83 0.81 2.54    0.56 0.55 1.45 0.32 0.31 3.39 

Gen-1 0.74 0.65 13.43 0.67 0.53 26.97 0.52 0.51 1.75 0.49 0.48 1.08 

Gen-2 0.71 0.62 13.80 0.69 0.58 18.90 0.55 0.53 2.90 0.54 0.53 2.52 

Gen-3    0.64 0.47 36.06    0.42 0.42 0.73 

BD_disc_08_15 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.66 0.64 3.26    0.59 0.59 0.19 0.32 0.32 0.35 

Gen-1 0.73 0.70 3.12 0.63 0.55 14.97 0.55 0.55 -0.52 0.50 0.50 -0.22 

Gen-2 0.69 0.67 3.34 0.63 0.57 11.01 0.55 0.55 -0.12 0.53 0.53 0.28 

Gen-3    0.60 0.49 21.20    0.43 0.43 -0.60 

DBH_Normal_08_15 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.73 0.56 28.61    0.73 0.73 0.03 0.43 0.43 -0.21 

Gen-1 0.86 0.83 3.81 0.71 0.61 17.14 0.63 0.63 -0.50 0.62 0.62 -0.26 

Gen-2 0.77 0.73 5.43 0.73 0.65 11.33 0.69 0.69 -0.78 0.65 0.66 -0.66 

Gen-3    0.67 0.53 26.77    0.53 0.53 -0.42 

BD_core_08_15 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.91 0.89 1.90    0.61 0.61 0.61 0.34 0.33 1.38 

Gen-1 0.89 0.87 2.59 0.72 0.56 28.02 0.56 0.56 0.47 0.52 0.52 0.40 

Gen-2 0.89 0.86 2.92 0.76 0.67 14.46 0.60 0.60 0.34 0.58 0.58 0.36 

Gen-3    0.73 0.58 25.69    0.44 0.44 0.14 
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Figure 23 Accuracies of EBV for NPV indices ‘Forico 2019 High Productivity Sites’ and ‘Forico 2020 
Normal Sites’ computed with and without the 2021 genomic relationship matrix (GRM) in E. nitens. The 
left plot shows accuracies for assayed trees and the right plot shows accuracies for non-assayed trees. 

 

Table 15 Mean EBV accuracies for NPV Indices called ‘Forico 2019 High Productivity Sites’ and ‘Forico 
2020 Normal Sites’ and percentage change in the mean (%), when using the H (based on the 2021 GRM) 
and A matrices in the mixed model equations (in E. nitens). 

Forico 2019 High Productivity Sites 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.68 0.59 15.36    0.64 0.64 0.26 0.38 0.37 0.59 

Gen-1 0.77 0.73 4.67 0.66 0.57 14.61 0.57 0.57 -0.19 0.54 0.54 -0.08 

Gen-2 0.70 0.66 6.50 0.66 0.59 11.82 0.60 0.60 -0.10 0.58 0.58 0.13 

Gen-3    0.61 0.49 25.58    0.44 0.44 -0.21 

Forico 2020 Normal Sites 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.68 0.57 18.88    0.67 0.67 0.37 0.39 0.39 0.80 

Gen-1 0.77 0.74 4.08 0.66 0.58 13.90 0.59 0.59 -0.10 0.56 0.56 0.12 

Gen-2 0.69 0.65 5.48 0.65 0.59 11.15 0.60 0.60 0.02 0.59 0.59 0.24 

Gen-3    0.61 0.49 24.52    0.47 0.47 0.14 

 

Table 15 shows that there has been substantial improvement in the accuracy of predicted EBV for 

indices in current use by Forico, when using a H matrix. Gen-3 non-parents have an increase of 25%.  

 

Development of pedigree forensics pipelines 
Pedigree forensics is the detection of errors in field-based pedigrees based on genomic information. 

For example, an assumed parent-offspring relationship is detected as a mismatch given the results of 

DNA assays on both individuals. Pedigree forensics entails the recovery of the “true” parent if the true 

parent has also been assayed. The forensics pipeline also must include scope for undertaking quality 

control of the DNA assay itself, because the quality of the forensic checking is only as good as the 
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quality of the assay.  Figure 24 shows a schematic of how a pedigree forensics pipeline will work. The 

schematic distinguishes between facilities, processes, actions and software. At the entry point is “raw” 

data, which are data supplied from a genomics service provider that is yet to be translated into actual 

SNP genotype calls. It may be raw sequence read data such as BAM files (or possibly FASTQ files), 

or it may be the CEL data that many chip manufacturers such as Thermo Fisher provide. In many 

cases it will not be the TBA’s task to work with such data, but perhaps a research partner. Regardless 

of who does it, a major process is the task of converting raw data into genotype calls, and to filter 

samples and SNP based on various criteria such as minor allele frequency (MAF) and missingness. 

 
Figure 24 Flow chart describing the placement of pedigree error detection and recovery steps within the 
overall TREEPLAN single-step pipeline 

The result of this process is the collection of genotype calls for the submitted samples, often stored in 

variant call format (VCF). It is probable that TBA must make provision for the storage of VCF files, or 

some equivalent format, in DATAPLAN.  Variance call format has a very broad scope and can cover 

many types of assay data. An option discussed at this stage is for the TBA to accept VCF files that 

meet a certain specification (e.g. genotype calls are stored in the “allele dosage” format).  

From discussions amongst the project personnel, it has become obvious that pedigree error detection 

and pedigree recovery will need to be undertaken outside the DATAPLAN framework. As is the case 

for imputation, transfer of these activities to within TBA computing infrastructure would be best done 

when the processes have been more fully worked through and finalised. 

Pedigree forensics will occur at two stages within the overall TREEPLAN pipeline:  

• Forensics applied at the level of SNP data using a software tool known as Sequoia, which 

occurs outside the DATAPLAN framework 

• Forensics applied at the level of the G matrix, within the framework of DATAPLAN 
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SEQUOIA 

SEQUOIA (Huisman, 2017) is a recently developed software package designed to turn information on 

hundreds or thousands of SNP into a multi-generational pedigree, using full-likelihood based 

methodology. It can be used to recover an unknown pedigree or purely as tool to flag “mismatches”, 

i.e. instances where a field-based pedigree does not agree with the pedigree inferred from the SNP 

data. Its core function however is to assign individuals as parents, when those individuals have been 

assayed. It can cluster half-siblings that share an unsampled parent and can assign grand-parents to 

half-sib ships.  

At the core of the SEQUOIA software is the Sequoia function for running parentage assignment and 

full pedigree reconstruction. 

• If no iterations are specified (MaxSibIter=0), the function only performs parentage assignment 

• If one or more iterations are specified (MaxSibIter>0) it will attempt to find pairs of likely full- 

and half-siblings 

• It then clusters the pairs into sibships, assigning a ‘dummy parent’ to each sibship  

• It tries to replace dummy parents with genotyped individuals where possible 

The PedCompare function in the SEQUOIA package is useful for comparing a field-based and 

genetically inferred pedigree. It identifies mismatches for those individuals which have genotyped 

parents assigned to them based on SNP data, that do not match the parents supplied from the field-

based pedigree. Table 16 shows a snippet of output from the PedCompare function. In this example 

there are some full sibs showing a mismatch in terms of its assigned male parent. SEQUOIA works by 

creating dummy female and male parents and attempts to assign actual assayed individuals to these 

dummies. In this case there have been no matches. The “true” male parent must still not be assayed. 

SEQUOIA uses the codes “GD” and “GG” to denote the individuals is assayed and the parent is a 

potential dummy (GD) or is assayed (GG). 

Table 16 Example of SEQUOIA output from the PedCompare function. 

Id 
FieldPED 

FP 

FieldPED 

MP 

Dummy 

FP 

Dummy 

MP 

Assigned 

FP 

Assigned 

MP 

FP 

cat 

MP 

cat 

Status 

of FP 

Status of 

MP 

14471 11847 9560 F0037 M0060 11847 nomatch GG GD Match Mismatch 

14472 11847 9560 F0037 M0060 11847 nomatch GG GD Match Mismatch 

14476 11847 9560 F0037 M0060 11847 nomatch GG GD Match Mismatch 

14479 11847 9560 F0037 M0060 11847 nomatch GG GD Match Mismatch 

14480 11847 9560 F0037 M0060 11847 nomatch GG GD Match Mismatch 

 

It is possible to run SEQUOIA as a stand-alone FORTRAN program outside the R framework. This 

may be the desirable strategy to take if implementing SEQUOIA within the TREEPLAN pipeline as 

TBA are already accustomed to running FORTRAN executables in the pipeline. Also, when the data 

set becomes large (> 10,000 individuals) we may struggle to read the genetic data into R.  Compiling 

the stand-alone FORTRAN with all the debugging options enabled will help us to understand where 

and why the program occasionally fails. Using either the R or standalone version within DATAPLAN 

would require SNP level data to be also accessible from within DATAPLAN.  

GRM-NRM comparison tool 

Comparing the constructed GRM with the NRM (limited to the assayed individuals, so it has the same 

dimensions as the GRM) is an alternative method for detecting mismatches between a field-based 

pedigree and a pedigree inferred from the SNP data. A custom PERL script has been written that 

performs this comparison, once FORTRAN programs have been used to construct both the NRM and 
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GRM. This tool could prove useful in situations where TBA has received only a constructed GRM from 

a 3rd party and does not have access to the SNP level data. 

The tool should be run as a second stage QA process, once the first stage QA process using 

SEQUOIA has been completed, or in lieu of the first stage QA process, if TBA received a constructed 

GRM, rather than SNP level data. 

A limited GRM-NRM comparison is performed, in the sense that only the following relationships are 

examined 

• The female parent- and male parent-offspring pairings in a CP family 

• All possible pairings among the full-sibs in the CP family 

• The female parent-offspring pairing in an OP family 

• All possible pairings among the half-sibs in the OP family 

 

Hill and Weir have published useful articles on the variance expected in genomic relationships (Hill 

and Weir, 2011; Hill and Weir 2012). These papers develop theory to predict the variance in genomic 

relationship coefficients as a function of genetic map length, the number of chromosomes and the 

relational type (first, second, third degree relative etc). This theory is used to predict the expectations 

of variance in half- and full-sib relationships. In theory there is no variance in the genomic relationship 

between parent and offspring and should not deviate from 0.5. However, due to genotyping errors and 

the finite sampling of the genome, variance is observed. Simulation may be one way to derive what 

would be typical given an assumed genotyping error rate and sampling protocol. 

An initial quality control step will include checking for unintentional duplication of samples, and for 

dubious SNPs (based on call rates, MAF, missingness etc) that have made it through from the 

genotype calling and imputation stage. An initial pedigree error detection step can also be undertaken 

that does not rely on iterating within the SEQUOIA function, which can be time consuming. We have 

now fully tested the SEQUOIA software for implementing these steps and recommend its operational 

application. There is now a prototype SEQUOIA “mini-pipeline” within the overall pedigree forensics 

pipeline. An important part of the SEQUOIA mini-pipeline is the extraction of field-based pedigree and 

life history data from DATAPLAN and the matching of sample IDS contained in the VCF file to 

DATAPLAN genotype IDs (genotype ID here meaning an “individual ID” and applies to both the ortet 

and its clonal replicates).  

At this stage the plan is to have SEQUOIA check for mismatches between the field-based pedigree 

stored in DATAPLAN and the pedigree inferred from the SNP data (e.g. assigned parents in CP 

and/or OP families that are unlikely based on SNP data). We have devised algorithms that can 

determine whether the mismatch is the result of a family-based error (i.e. the parent has been 

misassigned leading to all assayed sibs in the family also surfacing with red flags), or a genotype-level 

error (i.e. the genotype has been mis-assigned and its assayed sibs are surfacing clean, indicating the 

assigned parents are correct).  The offending individuals are then removed from any subsequent 

downstream processing (the construction of the GRM). With time and experience we can then begin to 

get more sophisticated and begin to explore how automatic changing of the DATAPLAN pedigree can 

be implemented. 
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Discussion 
One of the highlight outcomes of the current work has been the success of the single-step analysis in 

E. nitens.  Firstly, from the aspect of demonstrating the direct portability of the single-step 

methodology across species, and secondly, from the aspect of demonstrating the large improvements 

in accuracy possible with the technology. The target species for the development of the single-step 

methodology had been E. globulus. We anticipated very early in our planning that each species would 

have its own unique features and the platform for incorporating genomics had to be flexible. We 

identified single-step BLUP technology as that platform. Once we had it trialled in the pilot species it 

was seamlessly carried over to its use in E. nitens. We also recognised that we could not afford to get 

too distracted with specific SNP genotyping platforms, anticipating that in the future SNP genotyping 

technologies will change. TBA recognised that low and medium coverage whole genome sequencing, 

and SNP chips are both valid platforms for obtaining genomic data and they all have their advantages 

and disadvantages. We elected not to get trapped into building databases for storing DNA information 

at the locus level but focused only on the storage of genomic relationship coefficients. This strategy 

has served us well, in that TBA has been able to work efficiently and collaboratively with multiple 

providers including one 3rd party genomic services provider that does not wish to share individual 

locus information but can deliver accurate genomic relationships. 

The single-step BLUP methodology, aided by a good working relationship between TBA, its member 

(Forico) and a 3rd party genomics services provider (Gondwana Genomics), has resulted in a 25% 

increase in accuracy for the main $NPV index that Forico uses to identify new selections. This is an 

outstanding result and provides an indication of what lies ahead for E. globulus.  There are now over 

12,000 individuals assayed in E. nitens, which is more than double what is available in E. globulus 

(~5,000). Though the results are not as strong in E. globulus, it is likely that doubling the number of 

assayed trees, and by refinements of the technology, we will soon see increases in accuracy similar to 

those obtained in E. nitens.  

The story with E. nitens is constantly evolving. The Gondwana SNP panel is working extremely well 

and although there is no strong pressing need for Forico to consider an alternative SNP genotyping 

platform, TBA must be cognisant that other members may wish to do so. Because of the activities 

completed in this project TBA is well placed to proceed with a single-step analysis in E. nitens based 

on genomic data obtained from multiple platforms.  TBA has access to a database of 32 million SNP 

that are segregating in the Australian E. nitens breeding program.  From this database it can design a 

high-density assay that smaller assay sets (including the present Gondwana one) can impute up to. 

We have the materials in place to research and test imputation pipelines specific to this species. From 

experience gained in imputation development in E. globulus, TBA has learnt that large training sets 

are required to drive high imputation accuracy to the whole genome level. Thus, we anticipate a large 

training set will be required in E. nitens. Over 4,000 trees have been identified for this purpose. 

While E. nitens remains in a wait and see position regarding G matrix construction using multiple SNP 

genotyping platforms, TBA has shifted its focus directly onto E. globulus. This NIFPI project has 

demonstrated that in principle the strategy will work. For the strategy to work there must be significant 

development of genomic resources, provided ideally through whole genome sequencing. Because 

these resources have been developed in E. globulus, TBA and AVR were able to quickly adapt to 

unforeseen issues and re-prioritise strategy. As a result of this project the Australian eucalypt breeding 

industry has access to the following: state of the art sequence alignment and variance discovery 

pipelines; fully tested imputation pipelines specific to various applications points; and SNP filtering 

tools. This advanced genomics tool kit allowed AVR to quickly provide TBA with an intersection 

between the SNP on a commercially available SNP chip (Euk72K) built using non-Australian genetic 

resources and SNP discovered de novo in the core pedigree of the Australian breeding population. 
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TBA was then able to quickly adapt to a position of demonstrating the consolidation of genomic data 

provided from two platforms into a single G matrix. The result of this consolidation was a substantial lift 

in the accuracy of EBV, relative to when applying an unconsolidated G matrix.  

This is an excellent position to be in, while the Australian industry waits for more medium coverage 

whole genome sequencing (MWGS) of elite parents to come on-line. Additional MWGS is necessary 

to boost the size of the imputation reference training set to between 10 and 20 thousand trees. Once 

this training set size has been obtained, then consolidation in terms of imputing from low density chip 

sets to high-density SNP is likely to be realised.  

It should also be stated that the correct modelling of provenance structure will play an important role in 

the national TREEPLAN analysis of E. globulus. This issue is less evident in E. nitens. Strong 

provenance structure may be one of several contributing reasons why we are seeing less gain in 

accuracy from using genomics in E. globulus. The actual quantum of genomic data is one other 

reason. Another is that in E. nitens breeding there is a predominance of open-pollinated crossing and 

the gain from using genomics is largely in part due to the recovery of paternal, and hence full-sib, 

relationships. A complex simulation study that attempts to model the underlying factors that cause 

provenance structure will be required to fully test the planned analysis technique of using meta-

founders in the construction of the H matrix. Such a study was outside the scope of this NIFPI project. 

TBA will endeavour to fulfill its duty in providing a solution to the provenance problem in single-step 

analysis.  

 
Figure 25 Different assays may use different marker sets and the lists of individuals may differ from assay 
to assay. Imputation is used to impute all individuals up to a common high-density SNP set. 

In general terms, our strategy for allowing different providers, using different assays, to provide 

genomic data to the national genetic evaluation analysis of a species such as E. globulus has not 

changed from when we formulated it over 4 years ago (see Figure 25). Implementation of genomic 

breeding approaches in tree breeding operations requires the development of genotyping assays that 

are accurate, cheap, and high throughput. TBA is supportive of a culture that encourages some 

competition amongst providers to provide the most efficient and cheapest assay. The development 

and refinement of genotyping methods is crucial to realising genetic gain from genomics. Hence TBA 

fully expects assays to change with time. We believe this NIFPI project has provided TBA with the 

needed resources to future proof existing assay efforts and adapt to new ones.  We have already 

shown that different assays can be combined, but, yet to fully realise high accuracy imputation from 

ASSAY	A ASSAY	B ASSAY	C

IMPUTATION

COMMON	HIGH	DENSITY	SET

G



National Institute for Forest Products Innovation - Project No: NIF111-1819 

43 

the different, low-density assays to a common high-density set. TBA strongly recommends that 

continued genotyping using a WGS approach will serve to develop a training set of more appropriate 

scale to successfully drive this imputation.  Low pass WGS in the blue gum program is currently very 

cost competitive compared to available chip platforms and returns a significantly higher information 

content and data value compared to genotyping with low density assays. In summary TBA is adhering 

to its stated position of using a G matrix computed using genotype calls made for a high-density SNP 

set and using imputation to fill-in those calls when the routine assay is based on a low-density set. 

Another significant output of this NIFPI project has been the development of pedigree forensics as a 

routine practise in TBA operations. Two pedigree forensics pipelines are now in operation, one based 

on SNP level data and one based on comparing coefficients between the G and A matrices. The 

approaches are complementary to each other, and the latter approach provides a means to undertake 

forensics if SNP level data are not available. The pipelines have been applied in a separate NIFPI 

project in the Radiata Pine breeding pedigree and will be applied to the eucalypt programs once the 

requisite data is collated. The results obtained in P. radiata had a large and immediate impact, in that 

pedigree error detection has assumed a much greater role in that species improvement program. This 

has been flagged as an important follow up research focus.  
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Conclusions  
 

• Single-step analysis is performing extremely well in E. nitens with up to 25% improvement in 

accuracy of predicting EBV for juvenile progeny. This should translate to a 25% increase in 

genetic gain. 

• The indications are that similar gains can be made in E. globulus with the increased data from 

this project showing a substantial lift compared to earlier single-step runs with fewer trees. The 

quantum of assayed trees still needs to be substantially increased and problems in the 

analysis due to provenance structure still need to be resolved. 

• TBA has not deviated from the position that G matrices based on high-density SNP sets is key 

for allowing different assays from different providers to be used in a common genetic 

evaluation analysis.  

• The use of low-density, low-cost SNP genotyping assays, and the imputation of the assay 

results to larger SNP sets, are key for making genomic selection operational in tree 

improvement programs. 

• A suite of imputation pipelines has been developed for operational use in Australian eucalypt 

breeding programs. 

• Larger imputation reference panels are required for successful application of the imputation 

pipeline that imputes from low-density SNP chips to a high-density set.  

• Initial versions of the pedigree forensics and recovery pipelines have been developed for use 

in eucalypt and non-eucalypt species as a result of this NIFPI project. 
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Recommendations 
• A general presentiment within the group is that the development of an across species high-

density (HD) SNP set, that will eventually be translated into a cost-effective chip or assay, is a 

sound idea. The target species would include, and not be limited to, the four main commercial 

species grown in Australia. The high-density (HD) SNP sets discovered in this project (EGLOB 

HD SNP sets 1 and 2, ENITEN HD SNP set 1) represent a good starting point for the 

definition of the final HD SNP set, but need further refinement. This refinement would be 

based on 3 areas of research: 

1. More complex filtering based on  

a. Checking Mendelian inheritance using trio and family data 

b. Sample and SNP based genotype probabilities 

c. Hardy-Weinberg expectations 

 

2. The idea of selecting “tag SNP”, which are SNP that specifically tag the 

diversity in the species. This is achieved by studying LD patterns and 

haplotype block structure. Tag SNP will impute more consistently and reliably 

that random SNP. 

3. The idea of targeting SNP that are “causal” via GWAS studies. The success 

in E. nitens is partly the result of the hottest 1000 projects that sought to 

identify associated SNP. We should try and replicate this result in E. 

globulus.  

• Continued use of whole genome sequencing to develop the data sets needed to investigate all 

the above.  

• The pattern of accuracy improvement (and decline) seen in E. globulus is intriguing and 

represents a challenge as to what may be happening. The project team would recommend a 

dedicated work package for untangling the potentially many confounding factors at play.  

▪ Addressing the Meta-Founder issue. The propagation of ancestral 

relationships through the pedigree may increase general relatedness in later 

generational progeny (which are the cohorts in which we are seeing a 

decrease in accuracy). 

▪ Examining if a high incidence of pedigree errors could be contributing to the 

problem. Perhaps later generations are not as related as we assume they 

are? 

▪ The scaling/correction of marker genotype calls via appropriate estimation of 

the population allele frequencies. 

• A work package developing better computer simulation models that will aid in the preceding 

points and will help in elucidating better breeding strategy. 

• We would recommend a consolidated project that would bring all major commercial species 

up to an even level in terms of genomic resources and training and reference populations. We 

feel Australia is in a unique position to lead the rest of the world in terms of operationalising 

genomic selection in forest tree breeding.  
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Appendix 1 
Table 17 Estimated mean raw sequence coverage per sample based on read numbers. Calculation is done 
assuming PE 150+150 sequencing and a genome size of 530 Mbp. 

 

GenotypeID AverageCoverage GenotypeID AverageCoverage GenotypeID AverageCoverage GenotypeID AverageCoverage GenotypeID AverageCoverage

Nid2088026 7.183 Nid2238180 10.74 Nid2087916 27.80 Nid2087575 10.71 Gid834803 6.53

Nid1201041 9.461 Nid2087547 7.79 Nid2087702 0.07 Nid1176439 5.46 Gid8999146 5.94

Nid2163193 11.455 Nid8907831 8.10 Nid2087669 10.02 Nid8907599 12.66 Gid128140 4.60

Nid1417028 14.492 Nid2087561 11.67 Nid8687197 13.84 Nid2087576 10.61 Gid1682325 4.60

Nid1198032 5.147 Nid1411492 6.59 Nid2087917 10.87 Nid2087590 7.80 Gid124391 4.59

Nid8907239 5.557 Nid8909972 10.30 Nid2087703 7.84 Nid8684215 9.48 Gid1682260 4.41

Nid8494032 6.205 Nid8907799 8.52 Nid2226016 16.56 Nid2087578 13.96 Gid422820 4.07

Nid2171890 15.096 Nid2204333 13.69 Nid2087704 8.58 Nid8494395 15.32 Gid124523 3.64

Nid2166124 1.156 Nid2167283 14.61 Nid1203596 8.09 Nid2227638 15.53 Gid2399077 3.42

Nid2088041 16.834 Nid2169230 8.37 Nid1176087 5.31 Nid2225092 8.18 Gid507378 3.20

Nid2087670 19.608 Nid2087564 7.79 Nid1178399 23.37 Nid2087612 5.14 Gid2399016 2.93

Nid2087657 6.299 Nid8683370 11.43 Nid2088056 5.87 Nid1201900 11.26 Gid127728 2.80

Nid8687185 17.571 Nid8493115 9.29 Nid2087919 11.09 Nid8494416 10.28

Nid2088042 10.578 Nid2220456 14.20 Nid2087705 7.73 Nid2234436 9.39

Nid2088029 15.795 Nid2179613 6.88 Nid1410825 4.66 Nid8687569 13.48

Nid1195792 11.093 Nid2167519 6.42 Nid2087720 11.44 Nid2146875 7.55

Nid2087672 2.707 Nid1411303 6.37 Nid2087707 7.53 Nid8907652 12.67

Nid1176977 7.975 Nid8494383 9.01 Nid2087721 6.37 Nid2234452 12.40

Nid8911830 11.614 Nid2087580 8.96 Nid2087708 5.93 Nid2208378 12.70

Nid8910469 5.500 Nid8686517 4.41 Nid2170429 7.69 Nid2087843 12.49

Nid8494249 6.593 Nid8683587 7.80 Nid1204673 5.81 Nid2087596 6.94

Nid2171225 6.739 Nid2087581 9.28 Nid1174653 8.68 Nid1204814 15.45

Nid1205057 4.616 Nid2087603 7.75 Nid8684327 11.10 Nid1178117 11.34

Nid2088045 15.276 Nid1176233 10.69 Nid2087724 8.32 Nid1198206 8.05

Nid1418621 13.560 Nid8907627 9.05 Nid1179051 12.18 Nid2087844 11.53

Nid8907946 6.367 Nid2087831 13.48 Nid8911389 7.82 Nid8907868 12.21

Nid8685125 8.373 Nid8685709 5.00 Nid8686000 16.47 Nid2087618 5.09

Nid2226235 12.039 Nid2087834 8.13 Nid2087740 5.42 Nid2087846 3.21

Nid2171916 26.591 Nid2087607 5.14 Nid2087727 17.96 Nid1175589 6.07

Nid2088047 16.172 Nid1195514 6.46 Nid1179280 11.97 Nid2087860 9.79

Nid2087676 7.451 Nid1198210 4.47 Nid1195420 8.99 Nid2087847 10.49

Nid1416463 6.841 Nid8684893 5.08 Nid8684559 6.10 Nid8686122 7.36

Nid8687665 8.777 Nid2087835 8.19 Nid2226728 13.72 Nid2226387 17.57

Nid2166799 9.082 Nid2087621 15.58 Nid2225682 8.56 Nid2224075 8.22

Nid2088048 16.476 Nid2087608 8.61 Nid2087514 8.65 Nid2087848 13.15

Nid2087677 15.699 Nid8907431 8.90 Nid8687029 7.04 Nid2087849 10.91

Nid2219012 11.420 Nid2087836 5.60 Nid2087515 7.01 Nid2221793 8.96

Nid2199568 7.503 Nid2087622 1.33 Nid2087970 23.54 Nid1416637 5.02

Nid2087691 8.468 Nid2087589 8.21 Nid2087743 23.76 Nid1413513 8.40

Nid1175702 25.227 Nid2087850 11.84 Nid2087516 8.01 Nid1411600 18.85

Nid2087693 10.433 Nid8909573 6.79 Nid1178244 9.21 Nid8683429 13.84

Nid2087714 23.406 Nid2225779 15.92 Nid8685634 4.35 Nid2165960 7.10

Nid2087694 12.241 Nid8907648 8.39 Nid2087530 9.36 Nid2088021 11.85

Nid1198531 6.737 Nid8686093 9.41 Nid2087517 9.35 Nid1203549 6.94

Nid8494518 8.992 Nid2167559 10.26 Nid2087959 10.68 Nid2180140 10.79

Nid2087716 6.159 Nid2087852 9.50 Nid2087531 13.18 Nid2087865 7.97

Nid2087696 6.906 Nid2087839 9.60 Nid2087518 9.69 Nid2087638 14.60

Nid8687030 11.384 Nid2087625 9.54 Nid1179285 7.85 Nid1197430 6.65

Nid2087944 8.426 Nid8687153 10.59 Nid8909254 8.10 Nid2088024 6.08

Nid2087717 9.607 Nid2166975 6.33 Nid2161831 7.88 Nid2170147 6.43

Nid2087697 8.008 Nid2088010 153.63 Nid2087746 11.29 Nid2088025 8.72

Nid1196222 7.820 Nid8686997 6.38 Nid2087532 8.64 Gid829523 103.50

Nid8686433 11.217 Nid2087854 16.01 Nid2087519 7.08 Gid821569 36.86

Nid2087731 12.064 Nid2237663 9.06 Nid1204029 8.09 Gid2652694 31.95

Nid2087718 8.741 Nid2087641 5.47 Nid2225260 11.73 Gid2398606 31.23

Nid2087732 8.357 Nid1203092 6.72 Nid2087760 11.10 Gid422857 26.04

Nid2087719 7.850 Nid2165952 13.17 Nid1178709 6.52 Gid269992 23.23

Nid1175937 7.659 Nid2162980 7.81 Nid8910343 279.83 Gid1986176 20.14

Nid8911417 6.733 Nid2087642 9.35 Nid2087761 21.63 Gid2652574 19.23

Nid2167227 14.696 Nid1420896 10.63 Nid1179288 26.12 Gid833933 19.03

Nid2087734 9.119 Nid1177331 10.15 Nid1178723 10.60 Gid2652365 18.68

Nid2087520 7.727 Nid8910452 10.00 Nid1179536 8.79 Gid422447 17.77

Nid2087962 4.328 Nid2087857 3.95 Nid2087977 10.16 Gid422520 17.68

Nid2087521 11.190 Nid2087643 9.36 Nid2188448 5.19 Gid423234 17.53

Nid2235157 7.851 Nid2087644 8.27 Nid1197770 12.72 Gid828128 17.20

Nid1178711 10.880 Nid1176488 9.90 Nid1178039 8.46 Gid821576 16.74

Nid8683983 9.767 Nid2201486 1.66 Nid8907789 11.54 Gid2398599 16.27

Nid2087737 0.036 Nid2175221 17.02 Nid8687527 12.49 Gid423129 15.86

Nid2087524 9.103 Nid2088016 6.86 Nid2087539 8.80 Gid1987479 15.36

Nid2187623 12.773 Nid1177989 6.63 Nid8683131 0.15 Gid422916 15.10

Nid2087525 8.899 Nid2088030 12.71 Nid2166448 8.10 Gid829522 14.80

Nid1175956 5.151 Nid2088017 9.56 Nid8908250 9.70 Gid423141 14.66

Nid2087980 8.544 Nid1176523 8.27 Nid8683119 13.30 Gid422442 14.52

Nid1416066 6.086 Nid8908804 11.97 Nid2219316 23.63 Gid833904 14.04

Nid1196933 7.384 Nid2171900 24.63 Nid8685445 3.06 Gid833743 13.32

Nid2087754 11.302 Nid2088019 7.59 Nid8683574 17.47 Gid423047 13.27

Nid2087540 205.037 Nid2087648 10.04 Nid2087769 7.43 Gid8999285 13.12

Nid2087527 8.800 Nid1200910 10.12 Nid2087555 8.50 Gid833814 12.94

Nid8911892 7.506 Nid8494024 173.14 Nid1204065 12.21 Gid834442 12.46

Nid2170709 6.638 Nid2154325 7.57 Nid2168563 8.92 Gid834270 11.99

Nid2168823 9.079 Nid2087890 8.09 Nid2087998 32.05 Gid833493 11.43

Nid2087541 8.173 Nid1704465 8.86 Nid2087570 9.13 Gid2399031 10.92

Nid2087528 8.849 Nid2087664 11.33 Nid2087557 8.34 Gid422816 10.20

Nid1201796 6.529 Nid1413067 8.12 Nid1416999 7.71 Gid833572 9.94

Nid1196260 6.852 Nid8493215 9.34 Nid2236726 11.97 Gid833494 9.80

Nid8683548 11.624 Nid2238071 11.32 Nid2087999 6.93 Gid1986057 9.49

Nid2087757 6.205 Nid2088036 17.38 Nid1176662 10.69 Gid422631 9.47

Nid2087543 8.610 Nid1202090 8.70 Nid2087559 9.83 Gid2398686 9.30

Nid2087544 10.660 Nid8908576 10.11 Nid1201406 6.24 Gid8999525 9.08

Nid2235881 10.509 Nid2219000 16.00 Nid2087807 8.46 Gid2653385 8.54

Nid2223408 7.502 Nid2154328 0.04 Nid2087573 8.38 Gid124284 8.41

Nid2187643 7.920 Nid2087913 7.14 Nid1200361 9.68 Gid9000590 8.40

Nid2087986 3.307 Nid2087700 9.09 Nid1196065 5.49 Gid8999654 8.27

Nid2087545 8.688 Nid2088052 11.83 Nid2187231 9.00 Gid2650950 7.87

Nid8910355 5.895 Nid2087701 6.51 Nid8493566 9.77 Gid9000560 7.61

Nid2087546 12.549 Nid2087681 11.28 Nid2166697 6.34 Gid123690 7.35
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Appendix 2  
Table 18 Mean EBV accuracies for VOL_WA, VOL_TAS, VOL_GIPPS, VOL_AUST and percentage change 
in the mean (%), when using the H (based on the 2021 GRM) and A matrices in the mixed model equations 
(in E. globulus). 

VOL_WA 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.87 0.84 3.33 0.65 0.54 19.30 0.73 0.72 0.77 0.65 0.65 0.08 

Gen-1 0.85 0.83 2.19 0.71 0.66 8.06 0.70 0.70 -0.45 0.69 0.69 -0.35 

Gen-2 0.79 0.83 -4.51 0.76 0.79 -4.80 0.82 0.83 -1.56 0.80 0.79 0.88 

Gen-3    0.69 0.71 -2.26    0.79 0.79 1.15 

VOL_TAS 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.87 0.84 3.35 0.65 0.54 18.58 0.73 0.73 0.68 0.63 0.63 0.05 

Gen-1 0.85 0.83 2.00 0.72 0.67 7.24 0.72 0.72 -0.53 0.70 0.70 -0.45 

Gen-2 0.77 0.81 -4.94 0.75 0.79 -4.88 0.82 0.83 -1.46 0.80 0.79 0.84 

Gen-3    0.69 0.71 -2.41    0.77 0.77 0.76 

VOL_GIPPS 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.85 0.82 3.09 0.64 0.55 16.96 0.73 0.72 0.68 0.64 0.64 0.06 

Gen-1 0.82 0.81 1.82 0.70 0.65 7.33 0.71 0.71 -0.67 0.69 0.69 -0.39 

Gen-2 0.76 0.81 -6.01 0.73 0.77 -4.51 0.81 0.82 -1.71 0.78 0.77 0.78 

Gen-3    0.68 0.69 -2.77    0.75 0.75 0.27 

VOL_AUST 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.92 0.90 2.07 0.75 0.68 9.89 0.82 0.82 0.41 0.75 0.75 0.03 

Gen-1 0.90 0.88 1.42 0.80 0.77 4.48 0.80 0.80 -0.37 0.79 0.79 -0.26 

Gen-2 0.85 0.88 -2.99 0.83 0.85 -2.80 0.87 0.88 -0.99 0.86 0.85 0.55 

Gen-3    0.78 0.79 -1.29    0.85 0.84 0.61 
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Table 19 Mean EBV accuracies for VOL_WA, VOL_TAS, VOL_GIPPS, VOL_AUST and percentage change 
in the mean (%), when using the H (based on the 2020 GRM) and A matrices in the mixed model equations 
(in E. globulus). 

VOL_AUST 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.91 0.90 0.97 0.65 0.63 3.25 0.82 0.82 0.09 0.75 0.75 -0.02 

Gen-1 0.89 0.88 0.18 0.77 0.76 1.29 0.80 0.80 -0.04 0.79 0.79 -0.07 

Gen-2 0.86 0.88 -1.97 0.76 0.76 -0.85 0.88 0.88 -0.08 0.85 0.85 0.05 

Gen-3    0.11 0.11 -0.39    0.84 0.84 0.02 

VOL_WA 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.86 0.84 1.58 0.53 0.50 6.18 0.73 0.72 0.16 0.65 0.65 -0.05 

Gen-1 0.83 0.83 0.28 0.67 0.65 2.36 0.70 0.70 -0.05 0.69 0.69 -0.12 

Gen-2 0.81 0.83 -2.93 0.70 0.71 -1.41 0.83 0.83 -0.14 0.79 0.79 0.05 

Gen-3    0.10 0.10 -0.71    0.78 0.78 0.05 

VOL_TAS 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.86 0.84 1.58 0.53 0.50 6.24 0.73 0.73 0.14 0.63 0.63 -0.08 

Gen-1 0.83 0.83 0.24 0.68 0.67 2.15 0.72 0.72 -0.09 0.70 0.70 -0.15 

Gen-2 0.79 0.81 -3.06 0.70 0.71 -1.43 0.83 0.83 -0.16 0.79 0.79 0.04 

Gen-3    0.10 0.10 -0.67    0.76 0.76 -0.05 

VOL_GIPPS 

 Assayed Non-Assayed 

 Parent Non-parent Parent Non-parent 

 H A % H A % H A % H A % 

Gen-0 0.84 0.82 1.48 0.53 0.50 5.82 0.72 0.72 0.16 0.64 0.64 -0.03 

Gen-1 0.81 0.81 0.33 0.66 0.65 2.27 0.71 0.71 -0.06 0.69 0.69 -0.11 

Gen-2 0.78 0.81 -3.20 0.68 0.69 -1.32 0.82 0.82 -0.18 0.77 0.77 0.06 

Gen-3    0.10 0.10 -0.68    0.74 0.74 -0.15 
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